Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng

LG a

\({n^5} - n\) chia hết cho 5 với mọi \(n \in N^*\) 

Phương pháp giải:

Để chứng minh một mệnh đề đúng với mọi \(n \in {\mathbb{N}^*}\), ta tiến hành:

- Bước 1: Kiểm tra mệnh đề đúng khi \(n = 1\).

- Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên \(n = k\left( {k \ge 1} \right)\) và chứng minh rằng nó cũng đúng với \(n = k + 1\).

Lời giải chi tiết:

Với \(n = 1\) thì \({n^5} - n = {1^5} - 1 = 0 \vdots 5\) nên mệnh đề đúng.

Giả sử mệnh đề đúng với \(n = k\), nghĩa là \(\left( {{k^5} - k} \right) \vdots 5\). Ta sẽ chứng minh \(\left[ {{{\left( {k + 1} \right)}^5} - \left( {k + 1} \right)} \right] \vdots 5\).

Thật vậy,

\({\left( {k + 1} \right)^5} - \left( {k + 1} \right)\) \( = \left( {{k^5} + 5{k^4} + 10{k^3} + 10{k^2} + 5k + 1} \right) - k - 1\)

\( = \left( {{k^5} - k} \right) + \left( {5{k^4} + 10{k^3} + 10{k^2} + 5k} \right)\)

Vì \(\left( {{k^5} - k} \right) \vdots 5\) và \(\left( {5{k^4} + 10{k^3} + 10{k^2} + 5k} \right) \vdots 5\) nên \({\left( {k + 1} \right)^5} - \left( {k + 1} \right) \vdots 5\)

Vậy ta có đpcm.

LG b

Tổng các lập phương của ba số tự nhiên liên tiếp chia hết cho 9

Phương pháp giải:

Để chứng minh một mệnh đề đúng với mọi \(n \in {\mathbb{N}^*}\), ta tiến hành:

- Bước 1: Kiểm tra mệnh đề đúng khi \(n = 1\).

- Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên \(n = k\left( {k \ge 1} \right)\) và chứng minh rằng nó cũng đúng với \(n = k + 1\).

Lời giải chi tiết:

Đặt \({A_n} = {n^3} + {\left( {n + 1} \right)^3} + {\left( {n + 2} \right)^3},\) dễ thấy \({A_1} \vdots 9.\)

Giả sử đã có \({A_k} \vdots 9\) với \(k \ge 1.\) Ta phải chứng minh \({A_{k + 1}} \vdots 9.\)

Ta có:

\(\begin{array}{l}{A_{k + 1}} = {\left( {k + 1} \right)^3} + {\left( {k + 2} \right)^3} + {\left( {k + 3} \right)^3}\\ = {\left( {k + 1} \right)^3} + {\left( {k + 2} \right)^3} + \left( {{k^3} + 9{k^2} + 27k + 27} \right)\\ = {k^3} + {\left( {k + 1} \right)^3} + {\left( {k + 2} \right)^3} + 9{k^2} + 27k + 27\\ = {A_k} + 9{k^2} + 27k + 27.\end{array}\)

Vì \({A_k} \vdots 9\) và \(9{k^2} + 27k + 27 \vdots 9\) nên \({A_{k + 1}} \vdots 9\).

Vậy ta có đpcm.

LG c

\({n^3} - n\) chia hết cho 6 với mọi \(n \in N^*\)

Phương pháp giải:

Để chứng minh một mệnh đề đúng với mọi \(n \in {\mathbb{N}^*}\), ta tiến hành:

- Bước 1: Kiểm tra mệnh đề đúng khi \(n = 1\).

- Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên \(n = k\left( {k \ge 1} \right)\) và chứng minh rằng nó cũng đúng với \(n = k + 1\).

Lời giải chi tiết:

Đặt \({B_n} = {n^3} - n\).

Với \(n = 1\) thì \({B_1} = {1^3} - 1 = 0 \vdots 6\).

Giả sử ta có \({B_k} \vdots 6,k \ge 1\). Ta cần chứng minh \({B_{k + 1}} \vdots 6\).

Thật vậy, \({B_{k + 1}} = {\left( {k + 1} \right)^3} - \left( {k + 1} \right)\) \( = {k^3} + 3{k^2} + 3k + 1 - k - 1\) \( = \left( {{k^3} - k} \right) + 3{k^2} + 3k\)\( = {B_k} + 3{k^2} + 3k \vdots 3\)

Vậy ta có đpcm.

soanvan.me