Đề bài

Chứng minh rằng nếu ba số lập thành một cấp số nhân, đồng thời lập thành cấp số cộng thì ba số ấy bằng nhau.

Phương pháp giải - Xem chi tiết

Gọi 3 số đó là \(a - d,a,a + d\) rồi áp dụng tính chất của cấp số cộng và cấp số nhân.

Lời giải chi tiết

Gọi 3 số đó là \(a - d,a,a + d\).

Ta có: \({a^2} = \left( {a - d} \right)\left( {a + d} \right)\) \( \Leftrightarrow {a^2} = {a^2} - {d^2} \Leftrightarrow d = 0\)

Vậy ba số đó là \(a,a,a\) nên ta có đpcm.

soanvan.me