Đề bài

Trong các dãy số \(\left( {{u_n}} \right)\) sau đây, dãy số nào là cấp số cộng ?

(A)   \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = u_n^3 - 1\end{array} \right.\) ;

(B)   \(\left\{ \begin{array}{l}{u_1} = 2\\{u_{n + 1}} = {u_n} + n\end{array} \right.\) ;

(C)   \(\left\{ \begin{array}{l}{u_1} =  - 1\\{u_{n + 1}} - {u_n} = 2\end{array} \right.\) ;

(D)   \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 2{u_n} + 1\end{array} \right..\)

Phương pháp giải - Xem chi tiết

Dãy số \(\left( {{u_n}} \right)\) là CSC nếu \({u_{n + 1}} - {u_n} = d\) không đổi.

Lời giải chi tiết

Xét đáp án C ta thấy \({u_{n + 1}} - {u_n} = 2\) nên dãy \(\left( {{u_n}} \right)\) là CSC với công sai \(d = 2\) và số hạng đầu \({u_1} =  - 1\).

Đáp án: C

soanvan.me