Lựa chọn câu để xem lời giải nhanh hơn

Viết phương trình đường thẳng trong mỗi trường hợp sau đây :

LG a

Đi qua A(2;0;-1) và có vec tơ pháp tuyến chỉ phương \(\overrightarrow u  =  - \overrightarrow i  + 3\overrightarrow j  + 5\overrightarrow k .\)

Lời giải chi tiết:

\(\eqalign{\;\left\{ \matrix{  x = 2 - t \hfill \cr  y = 3t \hfill \cr  z =  - 1 + 5t \hfill \cr}  \right. \Leftrightarrow {{x - 2} \over { - 1}} = {y \over 3} = {{z + 1} \over 5}\cr} \)

LG b

Đi qua A(-2;1;2) và song song với trục Oz.

Lời giải chi tiết:

\(\eqalign{\left\{ \matrix{  x =  - 2 \hfill \cr  y = 1 \hfill \cr  z = 2 + t. \hfill \cr}  \right.  \cr  &\cr} \)

LG c

Đi qua A(2;3;-1) và B(1;2;4).

Lời giải chi tiết:

\(\eqalign{\;\left\{ \matrix{  x = 2 + t \hfill \cr  y = 3 + t \hfill \cr  z =  - 1 - 5t \hfill \cr}  \right. \Leftrightarrow {{x - 2} \over 1} = {{y - 3} \over 1} = {{z + 1} \over { - 5}}\cr} \)

LG d

Đi qua A(4;3;1) và song song với đường thẳng

\(\Delta :\left\{ \matrix{  x = 1 + 2t \hfill \cr y =  - 3t \hfill \cr z = 3 + 2t. \hfill \cr}  \right.\)

Lời giải chi tiết:

\(\eqalign{\left\{ \matrix{  x = 4 + 2t \hfill \cr  y = 3 - 3t \hfill \cr  z = 1 + 2t \hfill \cr}  \right. \Leftrightarrow {{x - 4} \over 2} = {{y - 3} \over { - 3}} = {{z - 1} \over 2}\cr} \)

LG e

Đi qua A(1;2;-1) và song song với đường thẳng giao tuyến của hai mặt phẳng \(\left( \alpha  \right):x + y - z + 3 = 0\) và \(\left( {\alpha '} \right):2x - y + 5z - 4 = 0\).

Lời giải chi tiết:

Vectơ chỉ phương của đường thẳng cần tìm là :

\(\overrightarrow u  = \left( {\left| \matrix{  1 \hfill \cr   - 1 \hfill \cr}  \right.\left. \matrix{   - 1 \hfill \cr  5 \hfill \cr}  \right|;\left| \matrix{   - 1 \hfill \cr  5 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr  2 \hfill \cr}  \right|;\left| \matrix{  1 \hfill \cr  2 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr   - 1 \hfill \cr}  \right|} \right)\)

\(= (4; - 7; - 3).\)

Vậy phương trình đường thẳng là \(\left\{ \matrix{  x = 1 + 4t \hfill \cr  y = 2 - 7t \hfill \cr  z =  - 1 - 3t. \hfill \cr}  \right.\)

LG g

Đi qua A(-2;1;0) và vuông góc với mặt phẳng \(\left( \alpha  \right):x +2 y - 2z + 1 = 0\).

Lời giải chi tiết:

Vectơ chỉ phương của đường thẳng là \(\overrightarrow u  = \overrightarrow {{n_\alpha }}  = (1;2; - 2).\)

Vậy phương trình là : \(\left\{ \matrix{  x =  - 2 + t \hfill \cr  y = 1 + 2t \hfill \cr  z =  - 2t. \hfill \cr}  \right.\)

LG h

Đi qua A(2;-1;1) và vuông góc với hai đường thẳng lần lượt có vec tơ chỉ phương là \(\overrightarrow {{u_1}} ( - 1;1; - 2)\) và \(\overrightarrow {{u_2}} (1; - 2;0).\)

Lời giải chi tiết:

Vectơ chỉ phương của đường thẳng cần tìm là :

\(\overrightarrow u  = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\)

\(= \left( {\left| \matrix{  1 \hfill \cr   - 2 \hfill \cr}  \right.\left. \matrix{   - 2 \hfill \cr  0 \hfill \cr}  \right|;\left| \matrix{   - 2 \hfill \cr  0 \hfill \cr}  \right.\left. \matrix{   - 1 \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{   - 1 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr   - 2 \hfill \cr}  \right|} \right) \)

\(= ( - 4; - 2;1).\)

Vậy phương trình của nó là \(\left\{ \matrix{  x =   2 - 4t \hfill \cr  y =  - 1 - 2t \hfill \cr  z = 1 + t. \hfill \cr}  \right.\)

soanvan.me