Đề bài

Cho hình bình hành \(ABCD.\) Đường tròn đi qua ba đỉnh \(A, \, B, \, C\) cắt đường thẳng \(CD\) tại \(P\) khác \(C.\) Chứng minh \(AP = AD.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Số đo tổng hai góc đối diện của tứ giác nội tiếp bằng \(180^0.\)

+) Sử dụng tính chất hai đường thẳng song song, tính chất hình bình hành.

Lời giải chi tiết

                             

Cách 1:

Do tứ giác \(ABCP\) nội tiếp nên \(\widehat{BAP} + \widehat{BCP} = 180^0.\)        (1)

Mà CD // AB nên \(\widehat{ABC}+ \widehat{BCP}=  180^0\) (hai góc trong cùng phía).      (2)

Từ (1) và (2) \(\Rightarrow\) \(\widehat{BAP}= \widehat{ABC}.\)

Mà CP // AB (do CD // AB) nên \(ABCP\) là hình thang

Nên \(ABCP\) là hình thang cân (Dấu hiệu nhận biết)

\(\Rightarrow\) \(AP = BC.\) (Tính chất hình thang cân) (3)

Mà \(BC = AD\) (do ABCD là hình bình hành)  (4)

Từ (3) và (4) \(\Rightarrow\) \(AP = AD\) (đpcm).

Cách 2: 

Vì ABCP là tứ giác nội tiếp nên \(\widehat{ABC}+ \widehat{APC}= 180^0\)

Mà ABCD là hình bình hành nên \(\widehat {ABC} = \widehat {ADC}\) (Tính chất hình bình hành)

Hơn nữa, \(\widehat {APC} + \widehat {APD} = {180^0}\)  (2 góc kề bù)

\( \Rightarrow \widehat {APD} = \widehat {ADC}\)

\(\Rightarrow\) Tam giác ADP cân tại A

\(\Rightarrow\) AP = AD (đpcm)