Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Trong hệ toạ độ \(Oxyz\), cho điểm \(A(-1 ; 2 ; -3)\), vectơ \(\vec a= (6 ; -2 ; -3)\) và đường thẳng \(d\) có phương trình: \(\left\{ \matrix{x = 1 + 3t \hfill \cr y = - 1 + 2t \hfill \cr z = 3 - 5t. \hfill \cr} \right.\)

LG a

Viết phương trình mặt phẳng \((α)\) chứa điểm \(A\) và vuông góc với giá của \(\vec a\).

Phương pháp giải:

Viết phương trình mặt phẳng biết điểm đi qua và 1 VTPT.

Lời giải chi tiết:

Mặt phẳng \((α)\) vuông góc với giá của \(\vec a\) nhận \(\vec a\) làm vectơ pháp tuyến; \((α)\) đi qua \(A(-1; 2; -3)\) có phương trình:

\(6(x + 1) - 2(y - 2) - 3(z + 3) = 0\) \( \Leftrightarrow  6x - 2y - 3z + 1 = 0\)

LG b

Tìm giao điểm của \(d\) và \((α)\).

Phương pháp giải:

Tham số hóa tọa độ giao điểm và thay vào phương trình mặt phẳng \((\alpha)\).

Lời giải chi tiết:

Gọi \(M = d \cap \left( \alpha  \right) \) \(\Rightarrow M \in d\) \( \Rightarrow M\left( {1 + 3t; - 1 + 2t;3 - 5t} \right)\)

Thay tọa độ điểm M vào phương trình \((α)\) ta có:

\(6.(1 + 3t) - 2(-1 + 2t) - 3(3 - 5t) + 1 = 0\) \(⇔ 29t = 0\) \( \Leftrightarrow  t = 0\).

Từ đây ta tính được toạ độ giao điểm \(M\) của \(d\) và \((α)\): \(M(1; -1; 3)\).

LG c

Viết phương trình đường thẳng \(∆\) đi qua điểm \(A\), vuông góc với giá của \(\vec a\) và cắt đường thẳng \(d\).

Phương pháp giải:

Đường thẳng đi qua A vuông góc với giá của \(\overrightarrow a \) và cắt đường thẳng d chính là đường thẳng AM.

Lời giải chi tiết:

Đường thẳng \(∆\) đi qua A và vuông góc với giá của \(\overrightarrow a \) nên \(\Delta  \subset \left( \alpha  \right)\). Hơn nữa \(∆\) cắt d nên  \(∆\)  đi qua M.

Do đó đường thẳng \(∆\) cần tìm chính là đường thẳng \(AM\) nhận vectơ \(\overrightarrow {AM}  = (2; -3; 6)\) làm vectơ chỉ phương.

Phương trình đường thẳng \(AM\): \(\left\{ \matrix{x = 1 + 2t \hfill \cr y = - 1 - 3t \hfill \cr z = 3 + 6t \hfill \cr} \right.\)

soanvan.me