Đề bài

Cho tam giác ABC cân tại A, hai đường cao BE và CF cắt nhau tại H. Chứng minh AH là đường trung trực của BC.

Phương pháp giải - Xem chi tiết

- Chứng minh: \(\Delta ABM = \Delta ACM\) suy ra MB = MC.

Lời giải chi tiết

Ta có AH là đường cao vuông góc với cạnh BC tại M.

Xét hai tam giác vuông ABM và ACM có:

Cạnh huyền bằng nhau: AB = AC

Cạnh góc vuông AM chung

Suy ra: \(\Delta ABM = \Delta ACM\) (cạnh huyền – cạnh góc vuông)

Suy ra MB = MC

Vậy AH là đường trung trực của BC