Đề bài

Cho hình chóp S.ABCD có đáy là hình bình hành, mặt bên SAB là tam giác vuông tại A. Với điểm M bất kì thuộc cạnh AD (M khác A và D), xét mặt phẳng (α) đi qua điểm M và song song với SA, CD.

a) Thiết diệm của hình chóp S.ABCD khi cắt bởi mp(α) là hình gì?

b) Tính diện tích thiết diện theo a và b; biết AB = a, SA = b, M là trung điểm của AD.

Lời giải chi tiết

 

a) Dễ thấy thiết diện là tứ giác MNPQ trong đó MN // QP // CD, MQ // SA.

Do SA ⊥ AB, AB //MN, MQ // SA nên thiết diện MNPQ là hình thang vuông tại M.

b) \({S_{MNPQ}} = {1 \over 2}\left( {MN + PQ} \right).MQ\)

Do M là trung điểm của AD nên:

\(\eqalign{  & MQ = {1 \over 2}SA = {1 \over 2}b  \cr  & PQ = {1 \over 2}CD = {1 \over 2}a  \cr  & MN = a \cr} \)

Vậy \({S_{MNPQ}} = {1 \over 2}\left( {a + {a \over 2}} \right).{b \over 2} = {{3{\rm{a}}b} \over 8}\).

soanvan.me