Đề bài

Cho tứ diện SABC, hai mặt phẳng (SAB) và (SBC) vuông góc với nhau và có SA vuông góc với mp(ABC), \(SB = a\sqrt 2 ,\widehat {B{\rm{S}}C} = {45^0},\widehat {ASB} = \alpha \).

a) Chứng minh rằng BC vuông góc với SB. Tìm điểm cách đều các điểm S, A, B, C.

b) Xác định α để hai mặt phẳng (SCA) và (SCB) tạo với nhau góc 60°.

Lời giải chi tiết

a) Vì

\(\eqalign{  & \left( {ABC} \right) \bot \left( {SAB} \right)  \cr  & \left( {SBC} \right) \bot \left( {SAB} \right) \cr} \)

mà \(BC = \left( {ABC} \right) \cap \left( {SBC} \right)\) nên \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\).

Như vậy, tứ diện SABC có \(\widehat {SAC} = {90^0}\) và \(\widehat {SBC} = {90^0}\) nên điểm cách đều S, A, B, C là trung điểm của SC.

Chú ý. Có thể chứng minh \(BC \bot SB\) như sau:

Kẻ \(A{B_1} \bot SB\) do \(\left( {SAB} \right) \bot \left( {SBC} \right)\) nên \(A{B_1} \bot \left( {SBC} \right)\)

\( \Rightarrow A{B_1} \bot BC\)

mặt khác \(BC \bot SA\)

\(\eqalign{  &  \Rightarrow BC \bot \left( {SAB} \right)  \cr  &  \Rightarrow BC \bot SB \cr} \)

b) Kẻ \(A{B_1} \bot SB,A{C_1} \bot SC\), dễ chứng minh được

\(A{B_1} \bot \left( {SBC} \right)\) và \(\left( {A{B_1}{C_1}} \right) \bot SC\).

Từ đó \(\widehat {A{C_1}{B_1}}\) là góc giữa hai mặt phẳng (SCA) và (SCB).

Xét ∆AB1C1 ta có \(A{B_1} = {B_1}{C_1}\tan {60^0}\)

mà \(A{B_1} = S{B_1}\tan \alpha ,{B_1}{C_1} = S{B_1}\sin {45^0}\).

Vậy hai mặt phẳng (SCA) và (SCB) tạo với nhau góc 60° khi và chỉ khi

\(S{B_1}\tan \alpha  = S{B_1}.{{\sqrt 2 } \over 2}.\sqrt 3  \Leftrightarrow \tan \alpha  = {{\sqrt 6 } \over 2}\).

Hệ thức này xác định α.

soanvan.me