Đề bài

Cho tứ diện ABCD có BC = AD = a, AC = BD = b, AB = CD = c. Đặt α là góc giữa BC và AD; β là góc giữa AC và BD; γ là góc giữa AB và CD. Chứng minh rằng trong ba số hạng \({a^2}\cos \alpha ,{b^2}\cos \beta ,{c^2}\cos \gamma \) có một số hạng bằng tổng hai số hạng còn lại.

Lời giải chi tiết

 

Ta có:

\(\cos \left( {\overrightarrow {BC} ,\overrightarrow {DA} } \right) = {{2{c^2} - 2{b^2}} \over {2{a^2}}} = {{{c^2} - {b^2}} \over {{a^2}}}\).

Vậy nếu góc giữa BC và AD bằng α thì:

\(\cos \alpha  = {{\left| {{c^2} - {b^2}} \right|} \over {{a^2}}}\) hay \({a^2}\cos \alpha  = \left| {{c^2} - {b^2}} \right|\).

Tương tự như trên, nếu gọi β là góc giữa AC và BD thì:

\({b^2}\cos \beta  = \left| {{a^2} - {c^2}} \right|\)

và γ là góc giữa AB và CD thì

\({c^2}\cos \gamma  = \left| {{b^2} - {a^2}} \right|\).

Với a, b, c lần lượt là dộ dài của BC, CA, AB, không giảm tính tổng quát có thể coi a ≥ b ≥ c. Khi đó:

\(\eqalign{  & {a^2}\cos \alpha  = {b^2} - {c^2}  \cr  & {b^2}\cos \beta  = {a^2} - {c^2}  \cr  & {c^2}\cos \gamma  = {a^2} - {b^2} \cr} \).

Từ đó, trong trường hợp này ta có \({b^2}\cos \beta  = {a^2}\cos \alpha  + {c^2}\cos \gamma \).

soanvan.me