Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(({u_n}),\) với \({u_n} = \sin {{n\pi } \over 3} + \cos {{n\pi } \over 6}.\)

LG a

Hãy tính \({u_1},{u_2},{u_3},{u_4},{u_5}.\)

Lời giải chi tiết:

\(\eqalign{
& {u_1} = \sqrt 3 \cr 
& {u_2} = {{\sqrt 3 + 1} \over 2} \cr 
& {u_3} = 0 \cr 
& {u_4} = - \sqrt 3 \cr 
& {u_5} = - \sqrt 3 \cr} \)

LG b

Chứng minh rằng \({u_n} = {u_{n + 12}}\) với mọi \(n \ge 1.\)

Lời giải chi tiết:

Với n là một số nguyên dương tùy ý, ta có

\(\eqalign{
& {u_{n + 12}} = \sin {{\left( {n + 12} \right)\pi } \over 3} + \cos {{\left( {n + 12} \right)\pi } \over 6} \cr 
& \,\,\,\,\,\,\,\,\,\, = \sin \left( {{{n\pi } \over 3} + 4\pi } \right) + \cos \left( {{{n\pi } \over 6} + 2\pi } \right) \cr 
& \,\,\,\,\,\,\,\,\, = \sin {{n\pi } \over 3} + \cos {{n\pi } \over 6} = {u_n} \cr} \)

soanvan.me