Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(({u_n})\) mà tổng n số hạng đầu tiên của nó, kí hiệu là \({S_n}\), được tính theo công thức sau :

                     \({S_n} = {{n(7 - 3n)} \over 2}.\)

LG a

 Hãy tính \({u_1},{u_2}\)  và \({u_3}.\)

Lời giải chi tiết:

 Ta có \({u_1} = {S_1} = 2,{u_2} = \left( {{u_1} + {u_2}} \right) - {u_1} \)

\(= {S_2} - {u_1} = {S_2} - {S_1} = 1 - 2 =  - 1,\)

 \({u_3} = \left( {{u_1} + {u_2} + {u_3}} \right) - ({u_1} + {u_2})\)\( = {S_3} - {S_2} =  - 4.\)

LG b

Hãy xác định số hạng tổng quát của dãy số \(({u_n})\).

Lời giải chi tiết:

Đặt \({S_0} = 0,\) ta có số hạng tổng quát của dãy số đã cho là:

\({u_n} = {S_n} - {S_{n - 1}} = {{n\left( {7 - 3n} \right)} \over 2} \)\(- {{\left( {n - 1} \right)\left[ {7 - 3\left( {n - 1} \right)} \right]} \over 2} \)

      \(= 5 - 3n.\)

LG c

Chứng minh rằng dãy số \(({u_n})\) là một cấp số cộng. Hãy xác định công sai của cấp số cộng đó.

Lời giải chi tiết:

 Ta có \({u_{n + 1}} - {u_n} = 5 - 3\left( {n + 1} \right) - 5 + 3n\)\( =  - 3\) với mọi \(n \ge 1.\) Vì thế, \(({u_n})\) là một cấp số cộng với công sai bằng \( - 3\).

soanvan.me