Chọn câu sai:
-
A
Phương trình bậc nhất một ẩn có dạng $ax + b = 0,a \ne 0$
-
B
Phương trình có một nghiệm duy nhất được gọi là phương trình bậc nhất một ẩn
-
C
Trong một phương trình ta có thể nhân cả hai vế với cùng một số khác 0
-
D
Phương trình \(3x + 2 = x + 8\) và \(6x + 4 = 2x + 16\) là hai phương trình tương đương.
Đáp án của giáo viên lời giải hay : B
Dựa vào định nghĩa phương trình bậc nhất 1 ẩn, phương trình tương đương
+ Phương trình dạng \(ax + b = 0,\) với $a$ và $b$ là hai số đã cho và \(a \ne 0,\) được gọi là phương trình bậc nhất một ẩn.
+ Trong một phương trình, ta có thể nhân cả hai vế với cùng một số khác $0.$
+ Hai phương trình có cùng một tập nghiệm là hai phương trình tương đương.
Các câu A, C, D đúng
Câu B sai vì phương trình có 1nghiệm duy nhất còn có thể là phương trình chứa ẩn ở mẫu, phương trình tích
Hãy chọn câu đúng.
-
A
Phương trình \(x = 0\) và \(x\left( {x + 1} \right) = 0\) là hai phương trình tương đương.
-
B
Phương trình \(x = 2\) và \(\left| x \right| = 2\) là hai phương trình tương đương.
-
C
\(kx + 5 = 0\) là phương trình bậc nhất một ẩn số
-
D
Trong một phương trình ta có thể chuyển một hạng tử từ vế này sang vế kia đồng thời đổi dấu của hạng tử đó.
Đáp án của giáo viên lời giải hay : D
Dựa vào quy tắc chuyển vế, định nghĩa hai phương trình tương đương, định nghĩa phương trình bậc nhất 1 ẩn
A, B sai vì chúng đều không có cùng tập nghiệm
C sai vì thiếu điều kiện \(k \ne 0\) .
D đúng với quy tắc chuyển vế
Phương trình \(2x + 3 = x + 5\) có nghiệm là:
-
A
\(\dfrac{1}{2}\)
-
B
\( - \dfrac{1}{2}\)
-
C
$0$
-
D
$2$
Đáp án của giáo viên lời giải hay : D
Chuyển hạng tử chứa ẩn sang vế trái, hạng tử tự do về vế phải, thu gọn rồi chia hai vế cho hệ số của ẩn ta tìm được nghiệm( chú ý khi chuyển vế hạng tử phải đổi dấu hạng tử đó).
\(2x + 3 = x + 5 \Leftrightarrow 2x - x = 5 - 3 \Leftrightarrow x = 2\)
Vậy $x=2$.
Phương trình \({x^2} + x = 0\) có số nghiệm là
-
A
1 nghiệm
-
B
2 nghiệm
-
C
vô nghiệm
-
D
vô số nghiệm
Đáp án của giáo viên lời giải hay : B
Vế trái đặt nhân tử chung rồi đưa phương trình về dạng phương trình tích $A.B=0 \Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.$
Từ đó tìm $x$.
\({x^2} + x = 0 \Leftrightarrow x\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\end{array} \right.\)
Vậy phương trình có 2 nghiệm $x=-1;x=0$
Phương trình \(2x + k = x - 1\) nhận \(x = 2\) là nghiệm khi
-
A
\(k = 3\)
-
B
\(k = - 3\)
-
C
\(k = 0\)
-
D
\(k = 1\)
Đáp án của giáo viên lời giải hay : B
Thay giá trị của nghiệm vào phương trình đã cho ta được phương trình ẩn $k,$ giải phương trình để tìm ra $k.$
Thay \(x = 2\) vào phương trình ta được: \(2.2 + k = 2 - 1 \Rightarrow k = - 3\)
Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là
-
A
\(x = - 4\)
-
B
\(x = - 2\)
-
C
Vô nghiệm
-
D
Vô số nghiệm
Đáp án của giáo viên lời giải hay : C
+ Tìm ĐKXĐ của phương trình.
+ Quy đồng mẫu rồi khử mẫu.
+ Giải phương trình vừa nhận được .
+ Đối chiếu điều kiện rồi kết luận nghiệm.
ĐKXĐ: \(x \ne \pm 3\)
\(\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\\ \Leftrightarrow \dfrac{{6x}}{{\left( {x + 3} \right)\left( {3 - x} \right)}} = \dfrac{{x\left( {3 - x} \right) - 3\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {3 - x} \right)}}\\ \Rightarrow 6x = x\left( {3 - x} \right) - 3\left( {x + 3} \right)\\ \Leftrightarrow 6x = 3x - {x^2} - 3x - 9\\ \Leftrightarrow {x^2} + 6x + 9 = 0\\ \Leftrightarrow {\left( {x + 3} \right)^2} = 0\\ \Leftrightarrow x + 3 = 0\\ \Leftrightarrow x = - 3\,\,\,\,\left( {ktm} \right).\end{array}\)
Ta thấy \(x = - 3\) không thỏa mãn ĐKXĐ nên phương trình vô nghiệm.
Phương trình \(\dfrac{x}{{x - 5}} - \dfrac{3}{{x - 2}} = 1\) có nghiệm là
-
A
\(x = - \dfrac{1}{2}\)
-
B
\(x = \dfrac{5}{2}\)
-
C
\(x = \dfrac{1}{2}\)
-
D
\(x = - \dfrac{5}{2}\)
Đáp án của giáo viên lời giải hay : D
+ Tìm ĐKXĐ của phương trình.
+ Quy đồng mẫu rồi khử mẫu.
+ Giải phương trình vừa nhận được.
+ Đối chiếu điều kiện rồi kết luận nghiệm.
ĐKXĐ: \(x \ne 2;x \ne 5\)
\(\begin{array}{l}\,\,\,\,\,\,\,\,\,\dfrac{x}{{x - 5}} - \dfrac{3}{{x - 2}} = 1\,\\ \Leftrightarrow \dfrac{x}{{x - 5}} - \dfrac{3}{{x - 2}} - 1 = 0\\ \Leftrightarrow \dfrac{{x\left( {x - 2} \right) - 3\left( {x - 5} \right) - 1\left( {x - 2} \right)\left( {x - 5} \right)}}{{\left( {x - 2} \right)\left( {x - 5} \right)}} = 0\\ \Rightarrow x\left( {x - 2} \right) - 3\left( {x - 5} \right) - 1\left( {x - 2} \right)\left( {x - 5} \right) = 0\\ \Leftrightarrow {x^2} - 2x - 3x + 15 - {x^2} + 7x - 10 = 0\\ \Leftrightarrow 2x + 5 = 0\\ \Leftrightarrow 2x = - 5 \Leftrightarrow x = - \dfrac{5}{2}\left( {tmdk} \right).\end{array}\)
Hãy chọn bước giải sai đầu tiên cho phương trình\(\dfrac{{x - 1}}{x} = \dfrac{{3x + 2}}{{3x + 3}}\)
-
A
ĐKXĐ: \(x \ne 0;x \ne 1\)
-
B
\(\left( {x - 1} \right)\left( {3x + 3} \right) = x\left( {3x + 2} \right)\)
-
C
\(3{x^2} - 3 = 3{x^2} + 2x\)
-
D
\( \Leftrightarrow 2x = - 3\)
Đáp án của giáo viên lời giải hay : A
Dựa vào các bước giải sau để tìm ra bước giải sai đầu tiên
+ Tìm ĐKXĐ của phương trình.
+ Quy đồng mẫu rồi khử mẫu.
+ Giải phương trình vừa nhận được.
+ Đối chiếu điều kiện rồi kết luận nghiệm.
ĐKXĐ: \(x \ne 0;x \ne - 1\) .
Do đó bước giải sai đầu tiên của phương trình là ĐKXĐ: \(x \ne 0;x \ne 1\)
Tìm điều kiện xác định của phương trình:\(\begin{array}{l}\dfrac{{4x}}{{4{x^2} - 8x + 7}} + \dfrac{{3x}}{{4{x^2} - 10x + 7}} = 1\\\end{array}\)
-
A
Mọi \(x \in R.\)
-
B
\(x \ne 1\)
-
C
\(x \ne 0;x \ne 1\)
-
D
\(x \ne \dfrac{5}{4}\)
Đáp án của giáo viên lời giải hay : A
ĐKXĐ của phương trình: đặt điều kiện cho ẩn để tất cả các mẫu trong phương trình đều khác 0.
ĐKXĐ: \(\left\{ \begin{array}{l}4{x^2} - 8x + 7 \ne 0\\4{x^2} - 10x + 7 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{\left( {x - 1} \right)^2} + 3 > 0\\4\left( {x - \dfrac{5}{4}} \right)^2 + \dfrac{3}{4} > 0\end{array} \right. \Leftrightarrow \forall x \in \mathbb{R}\)
Vậy phương trình xác định với mọi \(x \in R.\)
Số nghiệm của phương trình \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\) là
-
A
Vô số nghiệm $x \ne \pm 2$
-
B
\(1\)
-
C
\(2\)
-
D
\(0\)
Đáp án của giáo viên lời giải hay : A
+ Tìm ĐKXĐ của phương trình.
+ Quy đồng mẫu rồi khử mẫu.
+ Giải phương trình vừa nhận được.
+ Đối chiếu điều kiện rồi kết luận nghiệm.
ĐKXĐ: \(x \ne \pm 2\)
\(\begin{array}{l}\,\,\,\,\,\,\,\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\\ \Leftrightarrow \dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} + \dfrac{{5x - 2}}{{{x^2} - 4}} = 0\\ \Leftrightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right) + 5x - 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = 0\\ \Rightarrow \left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right) + 5x - 2 = 0\\ \Leftrightarrow {x^2} - 3x + 2 - {x^2} - 2x + 5x - 2 = 0\\ \Leftrightarrow 0x = 0 \Leftrightarrow x \in \mathbb{R}.\end{array}\)
Kết hợp ĐKXĐ ta có phương trình nghiệm đúng với mọi \(x \ne \pm 2\).
Vậy phương trình có vô số nghiệm \(x \ne \pm 2\)
Giải phương trình: \(2x\left( {x - 5} \right) + 21 = x\left( {2x + 1} \right) - 12\) ta được nghiệm \({x_0}.\) Chọn câu đúng.
-
A
\({x_0} = 4\)
-
B
\({x_0} < 4\)
-
C
\({x_0} > 4\)
-
D
\({x_0} > 5\)
Đáp án của giáo viên lời giải hay : B
Sử dụng quy tắc nhân, quy tắc chuyển vế để đưa phương trình về dạng phương trình bậc nhất một ẩn rồi giải.
\(\begin{array}{l}2x\left( {x - 5} \right) + 21 = x\left( {2x + 1} \right) - 12\\ \Leftrightarrow 2{x^2} - 10x + 21 = 2{x^2} + x - 12\\ \Leftrightarrow 2{x^2} - 10x - 2{x^2} - x = - 12 - 21\\ \Leftrightarrow - 11x = - 33\\ \Leftrightarrow x = 3\end{array}\)
Vậy phương trình có tập nghiệm là \(S = \left\{ 3 \right\}\) hay \({x_0} = 3 < 4.\)
Điều kiện xác định của phương trình \(1 + \dfrac{x}{{3 - x}} = \dfrac{{5x}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} + \dfrac{2}{{x + 2}}\) là:
-
A
\(x \ne 3;x \ne - 2\)
-
B
\(x \ne 3\)
-
C
\(x \ne - 2\)
-
D
\(x \ne 0\)
Đáp án của giáo viên lời giải hay : A
ĐKXĐ của phương trình: đặt điều kiện cho ẩn để tất cả các mẫu trong phương trình đều khác $0.$
ĐKXĐ: \(\left\{ \begin{array}{l}3 - x \ne 0\\x + 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\x \ne - 2\end{array} \right.\)
Tập nghiệm của phương trình \(\dfrac{{x + 2}}{{x - 1}} - 2 = x\) là
-
A
\(S = \left\{ { - 2;\,\,2} \right\}\)
-
B
\(S = \left\{ {1;\,\, - 3} \right\}\)
-
C
\(S = \left\{ { - 1;\,\,2} \right\}\)
-
D
\(S = \left\{ { - 1;\,\, - 2} \right\}\)
Đáp án của giáo viên lời giải hay : A
Đặt điều kiện mẫu thức khác 0. Sau đó quy đồng mẫu hai vế rồi khử mẫu; chuyển hạng tử chứa ẩn sang một vế, hằng số sang một vế; thu gọn rồi giải phương trình.
ĐK: \(x - 1 \ne 0 \Leftrightarrow x \ne 1.\)
\(\begin{array}{l}\,\,\,\,\,\,\,\dfrac{{x + 2}}{{x - 1}} - 2 = x\\ \Rightarrow x + 2 - 2\left( {x - 1} \right) = x\left( {x - 1} \right)\\ \Leftrightarrow {x^2} = 4\\ \Leftrightarrow \left[ \begin{array}{l}x = - 2\,\,\,\,\,\left( {tm} \right)\\x = 2\,\,\,\,\left( {tm} \right).\end{array} \right.\\ \Rightarrow S = \left\{ { - 2;\,\,2} \right\}\end{array}\)
Phương trình \(\dfrac{{x - 1}}{2} + \dfrac{{x - 1}}{3} - \dfrac{{x - 1}}{6} = 2\) có tập nghiệm là
-
A
\(S = \left\{ {0;1} \right\}\)
-
B
\(S = \left\{ 4 \right\}\)
-
C
\(S = \emptyset \)
-
D
\(S = \mathbb{R}\)
Đáp án của giáo viên lời giải hay : B
Vế trái đặt nhân tử chung rồi đưa phương trình về dạng phương trình bậc nhất một ẩn
\(\begin{array}{l}\,\,\,\,\,\,\,\dfrac{{x - 1}}{2} + \dfrac{{x - 1}}{3} - \dfrac{{x - 1}}{6} = 2\\ \Leftrightarrow \dfrac{{1}}{2} (x-1) + \dfrac{1}{3}(x-1) - \dfrac{1}{6}(x-1) = 2\\\Leftrightarrow \left( {x - 1} \right)\left( {\dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{6}} \right) = 2\\ \Leftrightarrow \left( {x - 1} \right)\dfrac{4}{6} = 2\\ \Leftrightarrow x - 1= 3\\ \Leftrightarrow x= 4\\ \Rightarrow S = \left\{ 4 \right\}\end{array}\)
Hai biểu thức \(P = \left( {x - 1} \right)\left( {x + 1} \right) + {x^2};\,\,Q = 2x\left( {x - 1} \right)\) có giá trị bằng nhau khi:
-
A
\(x = 0\)
-
B
\(x = 1\)
-
C
\(x = 0,5\)
-
D
\(x = - 1\)
Đáp án của giáo viên lời giải hay : C
+ Cho \(P = Q\)
+ Chuyển hạng tử chứa ẩn sang vế trái, hạng tử tự do về vế phải, thu gọn rồi chia hai vế cho hệ số của ẩn ta tìm được nghiệm( chú ý khi chuyển vế hạng tử phải đổi dấu hạng tử đó).
Để \(P = Q\) thì:
\(\begin{array}{l}\,\,\,\,\,\,\,\left( {x - 1} \right)\left( {x + 1} \right) + {x^2} = 2x\left( {x - 1} \right)\\ \Leftrightarrow {x^2} - 1 + {x^2} = 2{x^2} - 2x\\ \Leftrightarrow {x^2} + {x^2} - 2{x^2} + 2x = 1\\ \Leftrightarrow 2x = 1 \\ \Leftrightarrow x = 0,5\end{array}\)
Vậy với $x=0,5$ thì $P=Q$.
Giải phương trình: \(\dfrac{{x + 98}}{2} + \dfrac{{x + 96}}{4} + \dfrac{{x + 65}}{{35}} = \dfrac{{x + 3}}{{97}} + \dfrac{{x + 5}}{{95}} + \dfrac{{x + 49}}{{51}}\) ta được nghiệm là
-
A
Số nguyên dương
-
B
Số nguyên âm
-
C
Số chia hết cho \(3\)
-
D
Số chia hết cho \(8\)
Đáp án của giáo viên lời giải hay : B
Ta thấy quy luật: tổng của số trên tử và số dưới mẫu của các phân số bằng nhau
\(98 + 2 = 96 + 4 = 65 + 35 = 3 + 97 = 5 + 95 = 49 + 51\) .
Ta cộng thêm 1 vào mỗi phân số ở phương trình, quy đồng phân số để xuất hiện nhân tử chung; đặt nhân tử chung để đưa về dạng phương trình bậc nhất 1 ẩn.
\(\begin{array}{l}\,\,\,\,\,\,\,\dfrac{{x + 98}}{2} + \dfrac{{x + 96}}{4} + \dfrac{{x + 65}}{{35}} = \dfrac{{x + 3}}{{97}} + \dfrac{{x + 5}}{{95}} + \dfrac{{x + 49}}{{51}}\\ \Leftrightarrow \left( {\dfrac{{x + 98}}{2} + 1} \right) + \left( {\dfrac{{x + 96}}{4} + 1} \right) + \left( {\dfrac{{x + 65}}{{35}} + 1} \right) = \left( {\dfrac{{x + 3}}{{97}} + 1} \right) + \left( {\dfrac{{x + 5}}{{95}} + 1} \right) + \left( {\dfrac{{x + 49}}{{51}} + 1} \right)\\ \Leftrightarrow \dfrac{{x + 100}}{2} + \dfrac{{x + 100}}{4} + \dfrac{{x + 100}}{{35}} = \dfrac{{x + 100}}{{97}} + \dfrac{{x + 100}}{{95}} + \dfrac{{x + 100}}{{51}}\\ \Leftrightarrow \dfrac{{x + 100}}{2} + \dfrac{{x + 100}}{4} + \dfrac{{x + 100}}{{35}} - \dfrac{{x + 100}}{{97}} - \dfrac{{x + 100}}{{95}} - \dfrac{{x + 100}}{{51}} = 0\\ \Leftrightarrow \left( {x + 100} \right)\left( {\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{{35}} - \dfrac{1}{{97}} - \dfrac{1}{{95}} - \dfrac{1}{{51}}} \right) = 0\\ \Leftrightarrow x + 100 = 0\\ \Leftrightarrow x = - 100\end{array}\)
Vậy phương trình có tập nghiệm là \(S = \left\{ { - 100} \right\}\)
Suy ra nghiệm của phương trình là số nguyên âm.
Số nghiệm của phương trình \(\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\) là
-
A
\(2\)
-
B
\(3\)
-
C
\(4\)
-
D
\(1\)
Đáp án của giáo viên lời giải hay : A
Chuyển vế rồi đặt \(x + 2\) làm nhân tử chung, ta đưa phương trình về dạng phương trình tích $A\left( x \right).B\left( x \right) = 0$ , giải các phương trình $A\left( x \right) = 0;B\left( x \right) = 0$ rồi lấy hợp tất cả các nghiệm của chúng.
\(\begin{array}{l}\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\\ \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) - \left( {x + 2} \right){x^2} = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} - 3x + 5 - {x^2}} \right) = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {5 - 3x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\5 - 3x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = \dfrac{5}{3}\end{array} \right.\\\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ { - 2;\dfrac{5}{3}} \right\}\)
Tập nghiệm của phương trình \(\dfrac{{ - 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{5}{{{x^2} - x + 1}} - \dfrac{1}{{x + 1}}\) là
-
A
\(S = \left\{ {0;1} \right\}\)
-
B
\(S = \left\{ { - 1} \right\}\)
-
C
\(S = \left\{ {0; - 1} \right\}\)
-
D
\(S = \left\{ 0 \right\}\)
Đáp án của giáo viên lời giải hay : D
+ Tìm ĐKXĐ của phương trình
+ Quy đồng mẫu rồi khử mẫu
+ Giải phương trình vừa nhận được
+ Đối chiếu điều kiện rồi kết luận nghiệm
ĐKXĐ: \(x \ne - 1\)
\(\begin{array}{l}\,\,\,\,\,\,\,\,\dfrac{{ - 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{5}{{{x^2} - x + 1}} - \dfrac{1}{{x + 1}}\\ \Leftrightarrow \dfrac{{ - 7{x^2} + 4}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \dfrac{{5\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} - \dfrac{{{x^2} - x + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ \Leftrightarrow \dfrac{{ - 7{x^2} + 4}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \dfrac{{5\left( {x + 1} \right) - \left( {{x^2} - x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ \Rightarrow - 7{x^2} + 4 = 5\left( {x + 1} \right) - \left( {{x^2} - x + 1} \right)\\ \Leftrightarrow - 7{x^2} + 4 = 5x + 5 - {x^2} + x - 1\\ \Leftrightarrow 6{x^2} + 6x = 0\\ \Leftrightarrow 6x\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0(tm)\\x = - 1(ktm)\end{array} \right.\end{array}\)
Vậy phương trình có tập nghiệm là \(S = \left\{ 0 \right\}\)
Một hình chữ nhật có chu vi $372m$ nếu tăng chiều dài $21m$ và tăng chiều rộng $10m$ thì diện tích tăng $2862\,{m^2}.$ Chiều dài của hình chữ nhật là:
-
A
\(72m\)
-
B
\(144m\)
-
C
\(228m\)
-
D
\(114m\)
Đáp án của giáo viên lời giải hay : D
Giải theo các bước sau để tìm ra bước giải sai đầu tiên:
+ Lập phương trình: Chọn ẩn và đặt điều kiện; biểu diễn đại lượng chưa biết theo ẩn và đại lượng đã biết; lập phương trình biểu thị mối quan hệ giữa các đại lượng
+ Giải phương trình
+ Đối chiếu điều kiện rồi kết luận
Nửa chu vi của hình chữ nhật là: \(372:2 = 186\,\,\left( m \right).\)
Gọi chiều dài hình chữ nhật là \(x\,\,\left( m \right),\,\,\,\,\left( {0 < x < 186} \right).\)
\( \Rightarrow \) Chiều rộng hình chữ nhật là: \(186 - x\,\,\,\left( m \right).\)
Diện tích hình chữ nhật là: \(x\left( {186 - x} \right) = 186x - {x^2}\,\,\,\,\left( {{m^2}} \right).\)
Tăng chiều dài lên 21m thì chiều dài mới là: \(x + 21\,\,\,\left( m \right).\)
Tăng chiều rộng lên 10m thì chiều rộng mới là: \(186 - x + 10 = 196 - x\,\,\,\left( m \right).\)
Diện tích hình chữ nhật mới là: \(\left( {x + 21} \right)\left( {196 - x} \right) = 175x - {x^2} + 4116\,\,\,\left( {{m^2}} \right).\)
Theo đề bài ta có phương trình: \(186x - {x^2} + 2862 = 175x - {x^2} + 4116\)
\(\begin{array}{l} \Leftrightarrow 11x = 1254\\ \Leftrightarrow x = 114\,\,\,\left( {tm} \right).\end{array}\)
Vậy chiều dài hình chữ nhật là 114m.
Tổng hai số là $321.$ Hiệu của $\dfrac{2}{3}$ số này và \(\dfrac{5}{6}\) số kia bằng $34.$ Số lớn là :
-
A
\(201\)
-
B
\(120\)
-
C
\(204\)
-
D
\(117\)
Đáp án của giáo viên lời giải hay : A
Giải theo các bước sau để tìm ra bước giải sai đầu tiên:
+ Lập phương trình: Chọn ẩn và đặt điều kiện; biểu diễn đại lượng chưa biết theo ẩn và đại lượng đã biết; lập phương trình biểu thị mối quan hệ giữa các đại lượng.
+ Giải phương trình.
+ Đối chiếu điều kiện rồi kết luận.
Gọi một trong hai số là \(x,\,\,\,\left( {0 < x < 321;\,\,x \in N} \right).\)
Khi đó số còn lại là: \(321 - x.\)
Theo đề bài ta có: \(\dfrac{2}{3}x - \dfrac{5}{6}\left( {321 - x} \right) = 34\)
\(\begin{array}{l} \Leftrightarrow \dfrac{3}{2}x = \dfrac{{603}}{2}\\ \Leftrightarrow x = 201.\end{array}\)
Số còn lại là $321-201=120$
Vậy số lớn là: $201.$
Một xe du lịch khởi hành từ A để đến B. Nửa giờ sau, một xe tải xuất phát từ B để về A. Xe tải đi được $1$ giờ thì gặp xe du lịch. Tính vận tốc của mỗi xe, biết rằng xe du lịch có vận tốc lớn hơn xe tải là $10km/h$ và quãng đường $AB$ dài $90km.$
-
A
Vận tốc xe du lịch là \(40\,\,\left( {km/h} \right)\), vận tốc xe tải là \(30\,\,\left( {km/h} \right)\)
-
B
Vận tốc xe du lịch là \(30\,\,\left( {km/h} \right)\), vận tốc xe tải là \(40\,\,\left( {km/h} \right)\)
-
C
Vận tốc xe du lịch là \(40\,\,\left( {km/h} \right)\), vận tốc xe tải là \(50\,\,\left( {km/h} \right)\)
-
D
Vận tốc xe du lịch là \(50\,\,\left( {km/h} \right)\), vận tốc xe tải là \(40\,\,\left( {km/h} \right)\)
Đáp án của giáo viên lời giải hay : A
Giải theo các bước sau:
+ Lập phương trình: Chọn ẩn và đặt điều kiện; biểu diễn đại lượng chưa biết theo ẩn và đại lượng đã biết; lập phương trình biểu thị mối quan hệ giữa các đại lượng.
+ Giải phương trình.
+ Đối chiếu điều kiện rồi kết luận.
Gọi vận tốc của xe tải là x, đơn vị km/h, điều kiện: \(x > 0\) . Khi đó ta có:
Vận tốc xe du lịch là \(x + 10\left( {km/h} \right)\)
Thời gian xe du lịch đi từ A đến lúc gặp xe tải là: \(0,5 + 1 = 1,5\left( h \right)\)
Quãng đường xe du lịch và xe tải đi được đến lúc gặp nhau lần lượt là: \(\left( {x + 10} \right).1,5\left( {km} \right)\) và \(x.1\left( {km} \right)\) .
Vì hai xe đi ngược chiều nên quãng đường AB là tổng quãng đường mà hai xe đi được. Ta có phương trình:
\(\begin{array}{l}\left( {x + 10} \right).1,5 + x.1 = 90\\ \Leftrightarrow 2,5x = 75\\ \Leftrightarrow x = 30(tm)\end{array}\)
Vậy vận tốc của xe du lịch và xe tải lần lượt là $40{\rm{ }}\left( {km/h} \right)$ và $30{\rm{ }}\left( {km/h} \right).$
Một công việc được giao cho hai người. Người thứ nhất có thể làm xong công việc một mình trong $24$ phút. Lúc đầu, người thứ nhất làm một mình và sau \(\dfrac{{26}}{3}\) phút người thứ hai cùng làm. Hai người làm chung trong \(\dfrac{{22}}{3}\) phút thì hoàn thành công việc. Hỏi nếu làm một mình thì người thứ hai cần bao lâu để hoàn thành công việc.
-
A
\(20\) phút
-
B
\(12\) phút
-
C
\(24\) phút
-
D
\(22\) phút
Đáp án của giáo viên lời giải hay : D
Giải theo các bước sau:
+ Lập phương trình: Chọn ẩn và đặt điều kiện; biểu diễn đại lượng chưa biết theo ẩn và đại lượng đã biết; lập phương trình biểu thị mối quan hệ giữa các đại lượng
+ Giải phương trình
+ Đối chiếu điều kiện rồi kết luận
Gọi thời gian làm một mình xong việc của người thứ hai là $x$ (phút), điều kiện:\(x > \dfrac{{22}}{3}\) . Biểu thị công việc bằng $1$ ta có:
Năng suất của người thứ nhất và thứ hai lần lượt là \(\dfrac{1}{{24}}\) (công việc/phút) và \(\dfrac{1}{x}\) (công việc/phút).
Năng suất làm chung của hai người là \(\dfrac{1}{{24}} + \dfrac{1}{x}\) (công việc/phút)
Khối lượng công việc người thứ nhất làm một mình trong $\dfrac{{26}}{3}$ phút là \(\dfrac{1}{{24}}.\dfrac{{26}}{3} = \dfrac{{13}}{{36}}\) (công việc)
Khối lượng công việc hai người làm chung trong \(\dfrac{{22}}{3}\) phút là \(\dfrac{{22}}{3}.\left( {\dfrac{1}{{24}} + \dfrac{1}{x}} \right)\) (công việc)
Theo bài ra ta có phương trình:
\(\begin{array}{l}\,\,\,\,\,\,\,\,\dfrac{{13}}{{36}} + \dfrac{{22}}{3}.\left( {\dfrac{1}{{24}} + \dfrac{1}{x}} \right) = 1 \Leftrightarrow \dfrac{{22}}{3}.\left( {\dfrac{1}{{24}} + \dfrac{1}{x}} \right) = \dfrac{{23}}{{36}}\\ \Leftrightarrow \dfrac{1}{{24}} + \dfrac{1}{x} = \dfrac{{23}}{{264}} \Leftrightarrow \dfrac{1}{x} = \dfrac{1}{{22}} \Leftrightarrow x = 22(tm)\end{array}\)
Vậy nếu làm riêng người thứ hai cần làm trong $22$ phút thì xong công việc.
Tổng các nghiệm của phương trình: \(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}\) là
-
A
\(10\)
-
B
\( - 10\)
-
C
\( - 11\)
-
D
\(12\)
Đáp án của giáo viên lời giải hay : B
Phân tích mẫu thức thành nhân tử rồi sử dụng phương pháp tách hạng tử để giải
\(\dfrac{1}{{\left( {x + a} \right)\left( {x + b} \right)}} = \dfrac{1}{{b - a}}\left( {\dfrac{1}{{x + a}} - \dfrac{1}{{x + b}}} \right),a \ne b\) . Sau đó, làm theo các bước giải phương trình chứa ẩn ở mẫu.
Phân tích các mẫu thành nhân tử sau đó nhân cả 2 vế của phương trình với 2 ta được:
\(\begin{array}{l}pt \Leftrightarrow \dfrac{1}{{\left( {x + 1} \right)\left( {x + 3} \right)}} + \dfrac{1}{{\left( {x + 3} \right)\left( {x + 5} \right)}} + \dfrac{1}{{\left( {x + 5} \right)\left( {x + 7} \right)}} + \dfrac{1}{{\left( {x + 7} \right)\left( {x + 9} \right)}} = \dfrac{1}{5}\\ \Leftrightarrow \dfrac{2}{{\left( {x + 1} \right)\left( {x + 3} \right)}} + \dfrac{2}{{\left( {x + 3} \right)\left( {x + 5} \right)}} + \dfrac{2}{{\left( {x + 5} \right)\left( {x + 7} \right)}} + \dfrac{2}{{\left( {x + 7} \right)\left( {x + 9} \right)}} = \dfrac{2}{5}\end{array}\)
ĐKXĐ: $x \ne \left\{ { - 1; - 3; - 5; - 7; - 9} \right\}$ .
Khi đó:
\(\begin{array}{l}pt \Leftrightarrow \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}} + \dfrac{1}{{x + 3}} - \dfrac{1}{{x + 5}} + \dfrac{1}{{x + 5}} - \dfrac{1}{{x + 7}} + \dfrac{1}{{x + 7}} - \dfrac{1}{{x + 9}} = \dfrac{2}{5}\\ \Leftrightarrow \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 9}} = \dfrac{2}{5}\\ \Leftrightarrow \dfrac{{1\left( {x + 9} \right) - 1\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 9} \right)}} = \dfrac{{2\left( {x + 1} \right)\left( {x + 9} \right)}}{{5\left( {x + 1} \right)\left( {x + 9} \right)}}\\ \Rightarrow 5\left[ {x + 9 - \left( {x + 1} \right)} \right] = 2\left( {x + 1} \right)\left( {x + 9} \right)\\ \Leftrightarrow 5\left( {x + 9 - x - 1} \right) = 2{x^2} + 20x + 18\\ \Leftrightarrow 2{x^2} + 20x - 22 = 0 \Leftrightarrow {x^2} + 10x - 11 = 0\\ \Leftrightarrow {x^2} - x + 11x - 11 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {x + 11} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x + 11 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 11\end{array} \right.(tm)\\ \Rightarrow S = \left\{ {1; - 11} \right\}\end{array}\)
Vậy tổng các nghiệm của phương trình là \(1 + \left( { - 11} \right) = - 10.\)
Giải phương trình: \(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\) ta được các nghiệm là \({x_1};{x_2}\) với \({x_1} < {x_2}\) . Tính \(3{x_1} - {x_2}.\)
-
A
\(\dfrac{{25}}{3}\)
-
B
\( - 1\)
-
C
\( - \dfrac{7}{3}\)
-
D
\(1\)
Đáp án của giáo viên lời giải hay : B
+ Tìm ĐKXĐ
+ Nhận thấy \(x = - 2\) không là nghiệm nên ta chia hai vế của phương trình cho \({\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2}\) , khi đó xuất hiện các hạng tử giống nhau, đặt ẩn phụ, tìm đk của ẩn phụ rồi giải phương trình nhận được.
+ Thay giá trị của ẩn phụ vào cách đặt ta tìm được ẩn ban đầu.
+ Đối chiếu đk rồi kết luận nghiệm.
ĐKXĐ: \(x \ne \pm 1\) .
\(Pt \Leftrightarrow 20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} + 48.\dfrac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} = 0\)
Với \(x = - 2\) ta có phương trình \( \Leftrightarrow 20.{\left( {\dfrac{{ - 4}}{{ - 1}}} \right)^2} = 0\) vô lý \( \Rightarrow x = - 2\) không là nghiệm của phương trình.
Lại có với \(x \ne 1;\,\,x \ne - 2\) thì \({\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} \ne 0,\) ta chia hai vế của phương trình cho \({\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2}\), ta được:
\(pt \Leftrightarrow 20{\left[ {\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}}} \right]^2} + 48\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} - 5 = 0\)
Đặt \(t = \dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}}\) , ta có
\(\begin{array}{l}pt \Leftrightarrow 20{t^2} + 48t - 5 = 0 \Leftrightarrow 20{t^2} + 50t - 2t - 5 = 0\\ \Leftrightarrow 10t\left( {2t + 5} \right) - \left( {2t + 5} \right) = 0 \Leftrightarrow \left( {2t + 5} \right)\left( {10t - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}2t + 5 = 0\\10t - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = - \dfrac{5}{2}\\t = \dfrac{1}{{10}}\end{array} \right..\end{array}\)
Với \(t = - \dfrac{5}{2}\) ta có:
$\begin{array}{l}\,\,\,\,\,\,\,\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} = - \dfrac{5}{2}\\ \Rightarrow 2\left( {{x^2} - 3x + 2} \right) = - 5\left( {{x^2} + 3x + 2} \right)\\ \Leftrightarrow 2{x^2} - 6x + 4 = - 5{x^2} - 15x - 10\\ \Leftrightarrow 7{x^2} + 9x + 14 = 0\\ \Leftrightarrow 7\left( {{x^2} + 2.\dfrac{9}{{14}}x + \dfrac{{81}}{{196}}} \right) - \dfrac{{81}}{{28}} + 14 = 0\\ \Leftrightarrow 7{\left( {x + \dfrac{9}{{14}}} \right)^2} + \dfrac{{311}}{{28}} = 0\,\,\,\left( {VN} \right)\end{array}$
Với \(t = \dfrac{1}{{10}}\) ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,\,\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} = \dfrac{1}{{10}}\\ \Rightarrow 10\left( {{x^2} - 3x + 2} \right) = {x^2} + 3x + 2\\ \Leftrightarrow 9{x^2} - 33x + 18 = 0\\ \Leftrightarrow 3{x^2} - 11x + 6 = 0\\ \Leftrightarrow \left( {3x - 2} \right)\left( {x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}3x - 2 = 0\\x - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{2}{3}\\x = 3\end{array} \right.(tm)\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ {3;\,\,\dfrac{2}{3}} \right\}\)
Từ giả thiết suy ra \({x_1} = \dfrac{2}{3};{x_2} = 3 \Rightarrow 3{x_1} - {x_2} = - 1.\)
Tích các nghiệm của phương trình: \(\left( {{x^2} - 3x + 3} \right)\left( {{x^2} - 2x + 3} \right) = 2{x^2}\) là
-
A
\( - 2\)
-
B
\(2\)
-
C
\(4\)
-
D
\(3\)
Đáp án của giáo viên lời giải hay : D
+ Nhận thấy 0 không phải là nghiệm của phương trình nên ta chia cả hai vế của phương trình cho \({x^2} \ne 0\) .
+ Sau đó biến đổi phương trình để làm xuất hiện nhóm hạng tử giống nhau, đặt nhóm hạng tử giống nhau bằng ẩn mới, thay vào phương trình đã cho để được phương trình theo ẩn mới.
+ Giải phương trình theo ẩn mới
+ Thay giá trị vừa tìm được của ẩn mới vào biểu thức đặt ẩn để tìm ẩn ban đầu.
Nhận thấy \(x = 0\) không là nghiệm của phương trình nên chia hai vế của phương trình cho \({x^2} \ne 0\) ta được:
\(\dfrac{{{x^2} - 3x + 3}}{x}.\dfrac{{{x^2} - 2x + 3}}{x} = 2 \Leftrightarrow \left( {x + \dfrac{3}{x} - 3} \right)\left( {x + \dfrac{3}{x} - 2} \right) = 2\)
Đặt \(t = x + \dfrac{3}{x} - 3\) , ta có:
\(\begin{array}{l}pt \Leftrightarrow t\left( {t + 1} \right) = 2 \Leftrightarrow {t^2} + t - 2 = 0\\\,\,\,\,\,\,\, \Leftrightarrow \left( {t - 1} \right)\left( {t + 2} \right) = 0\\\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l}t - 1 = 0\\t + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 2\end{array} \right..\end{array}\)
Với \(t = 1 \Rightarrow x + \dfrac{3}{x} - 3 = 1 \Leftrightarrow {x^2} - 4x + 3 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)
Với \(t = - 2 \Rightarrow x + \dfrac{3}{x} - 3 = - 2 \Leftrightarrow {x^2} - x + 3 = 0 \Leftrightarrow {\left( {x - \dfrac{1}{2}} \right)^2} + \dfrac{{11}}{4} = 0\) vô nghiệm
Vậy phương trình có tập nghiệm là \(S = \left\{ {1;3} \right\}\)
Tích các nghiệm của phương trình là \(1.3 = 3.\)
Cho phương trình: \(\left( {4{m^2} - 9} \right)x = 2{m^2} + m - 3\) . Tìm m để phương trình có vô số nghiệm
-
A
\(m = - \dfrac{3}{2}\)
-
B
$m = 1$
-
C
\(m = \dfrac{3}{2}\)
-
D
\(m = \dfrac{2}{3}\)
Đáp án của giáo viên lời giải hay : A
Phương trình \({\rm{ax}} = b\)
+ Có vô số nghiệm khi \(\left\{ \begin{array}{l}a = 0\\b = 0\end{array} \right.\)
Phương trình
\(\begin{array}{l}\,\,\,\,\,\,\,\left( {4{m^2} - 9} \right)x = 2{m^2} + m - 3\\ \Leftrightarrow \left( {4{m^2} - 9} \right)x = 2{m^2} - 2m + 3m - 3\\ \Leftrightarrow \left( {2m - 3} \right)\left( {2m + 3} \right)x = 2m\left( {m - 1} \right) + 3\left( {m - 1} \right)\\ \Leftrightarrow \left( {2m - 3} \right)\left( {2m + 3} \right)x = \left( {m - 1} \right)\left( {2m + 3} \right)\end{array}\)
Phương trình có vô số nghiệm khi \(\left\{ \begin{array}{l}\left( {2m - 3} \right)\left( {2m + 3} \right) = 0\\\left( {m - 1} \right)\left( {2m + 3} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}2m - 3 = 0\\2m + 3 = 0\end{array} \right.\\\left[ \begin{array}{l}m - 1 = 0\\2m + 3 = 0\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = \dfrac{3}{2}\\m = - \dfrac{3}{2}\end{array} \right.\\\left[ \begin{array}{l}m = 1\\m = - \dfrac{3}{2}\end{array} \right.\end{array} \right. \Leftrightarrow m = - \dfrac{3}{2}\)
Vậy phương trình có vô số nghiệm khi \(m = - \dfrac{3}{2}.\)