Video hướng dẫn giải
Phân tích các đa thức sau thành nhân tử:
LG a.
\({a^2} - {b^2} - 4a + 4;\)
Phương pháp giải:
Áp dụng hằng đẳng thức để phân tích các đa thức thành nhân tử.
Lời giải chi tiết:
\({a^2} - {b^2} - 4a + 4 \)
\(={a^2} - 4a + 4 - {b^2}\)
\(= {\left( {a - 2} \right)^2} - {b^2} \)
\(= \left( {a - 2 + b} \right)\left( {a - 2 - b} \right)\)
\(= \left( {a + b - 2} \right)\left( {a - b - 2} \right)\)
LG b.
\({x^2} + 2x - 3\)
Phương pháp giải:
Áp dụng hằng đẳng thức để phân tích các đa thức thành nhân tử.
Lời giải chi tiết:
\({x^2} + 2x - 3 = {x^2} + 2x + 1 - 4\)
\(={\left( {x + 1} \right)^2} - {2^2} \)
\(= \left( {x + 1 + 2} \right)\left( {x + 1 - 2} \right)\)
\(=\left( {x + 3} \right)\left( {x - 1} \right)\)
LG c.
\(4{x^2}{y^2} - {\left( {{x^2}+{y^2}} \right)^2}\)
Phương pháp giải:
Áp dụng hằng đẳng thức để phân tích các đa thức thành nhân tử.
Lời giải chi tiết:
\(4{x^2}{y^2} - {\left( {{x^2}+{y^2}} \right)^2} \)
\(= {\left( {2xy} \right)^2} - {\left( {{x^2} + {y^2}} \right)^2}\)
\(= \left( {2xy - {x^2} - {y^2}} \right)\left( {2xy + {x^2} + {y^2}} \right)\)
\(= - \left( {{x^2} - 2xy + {y^2}} \right)\left( {{x^2} + 2xy + {y^2}} \right)\)
\(= - {\left( {x - y} \right)^2}{\left( {x + y} \right)^2}\)
LG d.
\(2{a^3} - 54{b^3}\) .
Phương pháp giải:
Áp dụng hằng đẳng thức để phân tích các đa thức thành nhân tử.
Lời giải chi tiết:
\(2{a^3} - 54{b^3} = 2\left( {{a^3} - 27{b^3}} \right)\)
\(=2\left[ {{a^3} - {{\left( {3b} \right)}^3}} \right] \)
\(= 2\left( {a - 3b} \right)\left( {{a^2} + 3ab + 9{b^2}} \right)\).
soanvan.me