Đề bài
Rút gọn và tìm giá trị (làm tròn đến chữ số thập phân thứ ba) của các căn thức sau:
a) \(\sqrt {4{{\left( {1 + 6x + 9{x^2}} \right)}^2}} \) tại \(x = - \sqrt 2 \)
b) \(\sqrt {9{a^2}\left( {{b^2} + 4 - 4b} \right)} \) tại \(a = - 2;\,\,b = - \sqrt 3 \)
Phương pháp giải - Xem chi tiết
- Rút gọn biểu thức chứa căn, áp dụng kiến thức \(\sqrt {{a^2}} = \left| a \right|\)
- Thay giá trị của biến vào biểu thức đã rút gọn rồi tính.
Lời giải chi tiết
a) \(\sqrt {4\left( {1 + 6x + 9{x^2}} \right)^2} \) \( = \sqrt {{2^2}{{\left[ {{{\left( {1 + 3x} \right)}^2}} \right]}^2}} \)\(= \sqrt {{{\left[ {2{{\left( {1 + 3x} \right)}^2}} \right]}^2}} \)\(= 2\left| {{{\left( {1 + 3x} \right)}^2}} \right|\)
\( = 2{\left( {1 + 3x} \right)^2}\) (vì \({\left( {1 + 3x} \right)^2} \ge 0\) )
Thay \(x = - \sqrt 2 \) vào \(2{\left( {1 + 3x} \right)^2}\), ta được :
\(2{\left[ {1 + 3\left( { - \sqrt 2 } \right)} \right]^2} = 2{\left( {1 - 3\sqrt 2 } \right)^2}\) \( = 2\left( {1 - 6\sqrt 2 + 18} \right) = 38 - 12\sqrt 2 \)
Dùng máy tính bỏ túi, ta tính được \(38 - 12\sqrt 2 \approx 21,029\)
b) \(\sqrt {9{a^2}\left( {{b^2} + 4 - 4b} \right)} \) tại \(a = - 2;\,\,b = - \sqrt 3 \)
\(\sqrt {9{a^2}\left( {{b^2} + 4 - 4b} \right)} \)\( = \sqrt {{{\left( {3a} \right)}^2}{{\left( {b - 2} \right)}^2}} \)\(= \sqrt {{{\left[ {3a\left( {b - 2} \right)} \right]}^2}} = \left| {3a\left( {b - 2} \right)} \right|\)
Thay \(a = - 2;\,\,b = - \sqrt 3 \) vào \(\left| {3a\left( {b - 2} \right)} \right|\) ta đươc :
\(\left| {3a\left( {b - 2} \right)} \right|\)\( = \left| {3.\left( { - 2} \right)\left( { - \sqrt 3 - 2} \right)} \right|\) \( = \left| {6\sqrt 3 + 12} \right| = 6\sqrt 3 + 12\)
Dùng máy tính bỏ túi, ta tính được \(6\sqrt 3 + 12 \approx 22,392\)
soanvan.me