Đề bài

Tính \(x\) trong hình 24 và làm tròn kết quả đến chữ số thập phân thứ nhất.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng: Tính chất đường phân giác của tam giác, tính chất của tỉ lệ thức.

Lời giải chi tiết

a) \(AD\) là tia phân giác góc \(A\) của \(∆ABC\) (gt) nên áp dụng tính chất của đường phân giác trong tam giác ta có:

 \(\dfrac{BD}{AB} = \dfrac{DC}{AC}\)

\(\Rightarrow DC = \dfrac{BD.AC}{AB}= \dfrac{3,5.7,2}{4,5}\)

\(\Rightarrow x = 5,6\)

b) \(PQ\) là đường phân giác góc \(P\) của \(∆PMN\) (gt) nên 

\(\dfrac{MQ}{MP}= \dfrac{NQ}{NP}\) (tính chất đường phân giác của tam giác)

Hay  \(\dfrac{MQ}{6,2} = \dfrac{x}{8,7}\)

Có: \(MN=MQ+x=12,5\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\Rightarrow \dfrac{x}{8,7} = \dfrac{MQ}{6,2} = \dfrac{x + MQ}{8,7+ 6,2}= \dfrac{12,5}{14,9}\)

\( \Rightarrow x = \dfrac{{12,5.8,7}}{{14,9}} \approx 7,3\)

soanvan.me