Đề bài

Tam giác \(ABC\) có \(AB= 5cm, AC= 6cm, BC= 7cm.\) Tia phân giác của góc \(BAC\) cắt \(BC\) tại \(E\). Tính các đoạn \(EB, EC\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng: Tính chất đường phân giác của tam giác, tính chất của dãy tỉ số bằng nhau.

Lời giải chi tiết

Vì \(AE\) là đường phân giác của tam giác ABC nên

\(\dfrac{EB}{AB} = \dfrac{EC}{AC}\) (tính chất đường phân giác của tam giác)

\( \Rightarrow\) \(\dfrac{EB}{5} = \dfrac{EC}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{EB}{5} = \dfrac{EC}{6} = \dfrac{EB+EC}{5+6} = \dfrac{BC}{11}=\dfrac{7}{11}\)  

\( \Rightarrow  EB = \dfrac{5.7}{11} =\dfrac{35}{11}\) cm

\(EC = \dfrac{6.7}{11} =\dfrac{42}{11}\) cm