Đề bài

Đố: Hình 27 cho biết có 6 góc bằng nhau:

\(\widehat{O_{1}} = \widehat {O_{2}} = \widehat {O_{3}} \)\(= \widehat {O_{4}} = \widehat {O_{5}} = \widehat {O_{6}}\). 

Kích thước các đoạn thẳng đã được ghi trên hình. Hãy thiết lập những tỉ lệ thức từ kích thước đã cho.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng: Tính chất đường phân giác của tam giác.

Lời giải chi tiết

\(OB\) là đường phân giác trong của \(∆OAC\) \( \Rightarrow \) \(\dfrac{x}{a} = \dfrac{y}{c}\)

\(OC\) là đường phân giác trong của \(∆OBD\) \(\Rightarrow \) \(\dfrac{y}{b} = \dfrac{z}{d}\)

\(OD\) là đường phân giác trong của \(∆OCE\) \( \Rightarrow \) \(\dfrac{z}{c}= \dfrac{t}{e}\)

\(OE\) là đường phân giác trong của \(∆ODF\) \( \Rightarrow \) \(\dfrac{t}{d} = \dfrac{u}{f}\)

\(OF\) là đường phân giác trong của \(∆OEG\) \( \Rightarrow \) \(\dfrac{u}{e} = \dfrac{v}{g}\)

\(OC\) là đường phân giác của  \(∆AOE\) \( \Rightarrow \) \(\dfrac{AC}{OA} = \dfrac{CE}{OE}\) hay \(\dfrac{x+ y}{a} = \dfrac{z + t}{e}\)

\(OE\) là đường phân giác của \(∆OCG\) \( \Rightarrow \) \(\dfrac{z + t}{c} =  \dfrac{u+v }{g}\)

\(OD\) làđường  phân giác của \(∆AOG\) \( \Rightarrow \) \(\dfrac{x+y+z }{a} = \dfrac{t+u+v }{g}\)

\(OD\) là đường phân giác của \(∆OBF\) \( \Rightarrow \) \(\dfrac{y+z}{b} = \dfrac{t + u}{f}\)

soanvan.me