Đề bài

Giải các bất phương trình bậc hai sau:

a) \(3{x^2} - 8x + 5 > 0\)

b) \( - 2{x^2} - x + 3 \le 0\)

c) \(25{x^2} - 10x + 1 < 0\)

d) \( - 4{x^2} + 5x + 9 \ge 0\)

Phương pháp giải - Xem chi tiết

Sử dụng định lý về dấu của tam thức bậc hai

Bước 1: Xác định dấu của hệ số \(a\) và tìm nghiệp của \(f\left( x \right)\) (nếu có)

Bước 2: Sử dụng định lý về đấu của tam thức bậc hai để tìm tập hợp các giá trị của của x sao cho \(f\left( x \right)\) mang dấu thỏa mãn bất phương trình

Lời giải chi tiết

a) \(3{x^2} - 8x + 5 > 0\)

Tam thức bậc hai \(3{x^2} - 8x + 5\) có hai nghiệm \({x_1} = 1;{x_2} = \frac{5}{3}\) và có hệ số \(a = 3 > 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \(3{x^2} - 8x + 5\) mang dấu “+” là \(\left( { - \infty ;1} \right) \cup \left( {\frac{5}{3}; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \(3{x^2} - 8x + 5 > 0\) là \(\left( { - \infty ;1} \right) \cup \left( {\frac{5}{3}; + \infty } \right)\)

b) Tam thức bậc hai \( - 2{x^2} - x + 3\) có hai nghiệm \({x_1} =  - \frac{3}{2};{x_2} = 1\) và có hệ số \(a =  - 2 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 2{x^2} - x + 3\) mang dấu “-” là \(x \in \left( { - \infty ; - \frac{3}{2}} \right] \cup \left[ {1; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \( - 2{x^2} - x + 3 \le 0\) là \(x \in \left( { - \infty ; - \frac{3}{2}} \right] \cup \left[ {1; + \infty } \right)\)

c) Tam thức bậc hai \(25{x^2} - 10x + 1\) có nghiệm kép \({x_0} = \frac{1}{5}\) và có hệ số \(a = 25 > 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy \(25{x^2} - 10x + 1 \ge 0\;\forall x \in \mathbb{R}\). Do đó tập hợp những giá trị của \(x\) sao cho tam thức \(25{x^2} - 10x + 1\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(25{x^2} - 10x + 1 < 0\) là \(\emptyset \)

d) \( - 4{x^2} + 5x + 9 \ge 0\)

Tam thức bậc hai \( - 4{x^2} + 5x + 9\) có hai nghiệm \({x_1} =  - 1;{x_2} = \frac{9}{4}\) và có hệ số \(a =  - 4 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 4{x^2} + 5x + 9\) mang dấu “+” là \(\left[ { - 1;\frac{9}{4}} \right]\)

Vậy tập nghiệm của bất phương trình \( - 4{x^2} + 5x + 9 \ge 0\) là \(\left[ { - 1;\frac{9}{4}} \right]\)