Đề bài

Xét hệ tọa độ \(Oth\) trong mặt phẳng, trong đó trục \(Ot\) biểu thị thời gian \(t\) (tính bằng giây) và trục \(Oh\) biểu thị độ cao \(h\) (tính bằng mét). Một quả bóng được đá lên từ điểm \(A\left( {0;0,3} \right)\) và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 8m sau 1 giây, và đạt độ cao 6m sau 2 giây. Trong khoảng thời gian nào (tính bằng giây) thì quả bóng ở độ cao lơn hơn 5m và nhỏ hơn 7m (làm tròn kết quả đến hàng phần nghìn)?

Phương pháp giải - Xem chi tiết

Lập đồ thị hàm số biểu thị độ cao phụ thuộc vào thời gian

Giải bất phương trình

Lời giải chi tiết

+ Độ cao h phụ thuộc vào thời gian t theo công thức hàm số sau:

\(h\left( t \right) =  - 4,85{t^2} + 12,55t + 0,3\) (m)

+ Quả bóng ở độ cao lớn hơn 5 m và hỏ hơn 7 m nên \(5 < h\left( t \right) < 7\)

+ Giải bất phương trình \( - 4,85{t^2} + 12,55t + 0,3 > 5\) hay \( - 4,85{t^2} + 12,55t - 4,7 > 0\)

Tam thức bậc hai \( - 4,85{t^2} + 12,55t - 4,7\) có hai nghiệm xấp xỉ\({t_1} = 0,454;{t_2} = 2,133\) và có hệ số \(a =  - 4,85 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(t\) sao cho tam thức \( - 4,85{t^2} + 12,55t - 4,7\) mang dấu “+” là \(\left( {0,454;2,133} \right)\)

Do đó BPT có tập nghiệm với đầu mút xấp xỉ là \(\left( {0,454;2,133} \right)\)

+ Giải bất phương trình \( - 4,85{t^2} + 12,55t + 0,3 < 7\) hay \( - 4,85{t^2} + 12,55t - 6,7 < 0\)

Tam thức bậc hai \( - 4,85{t^2} + 12,55t - 6,7\) có hai nghiệm xấp xỉ\({t_1} = 0,735;{t_2} = 1,835\) và có hệ số \(a =  - 4,85 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(t\) sao cho tam thức \( - 4,85{t^2} + 12,55t - 6,7\) mang dấu “-” là \(\left( { - \infty ;0,753} \right) \cup \left( {1,835; + \infty } \right)\)

Do đó BPT có tập nghiệm với đầu mút xấp xỉ là \(\left( { - \infty ;0,753} \right) \cup \left( {1,835; + \infty } \right)\)

+ Lấy giao của hai tập nghiệm trên, ta có \(t \in \left( {0,454;0,753} \right) \cup \left( {1,835;2,133} \right)\)

Vậy ở trong khoảng thời gian từ 0,454 s đến 0,753 s và từ 1,835 s đến 2,133 s thì quả bóng ở độ cao lớn hơn 5 m và nhỏ hơn 7m.