Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho phân thức: \(\dfrac{{{x^2} + 4{\rm{x}} + 4}}{{x + 2}}\)

LG a.

Với điều kiện nào của \(x\) thì giá trị của phân thức được xác định?

Phương pháp giải:

Điều kiện xác định của phân thức là: Mẫu thức khác \(0\).

Lời giải chi tiết:

Điều kiện của \(x\) để phân thức được xác định là: \(x + 2 \ne 0 \Rightarrow x \ne  - 2.\)

LG b.

Rút gọn phân thức.

Phương pháp giải:

Áp dụng hằng đẳng thức bình phương một tổng  để rút gọn phân thức.

Lời giải chi tiết:

Rút gọn phân thức: 

\(\dfrac{{{x^2} + 4{\rm{x}} + 4}}{{x + 2}}= \dfrac{{{x^2} + 2.x.2 + {2^2}}}{{x + 2}} \)\(\,= \dfrac{{{{\left( {x + 2} \right)}^2}}}{{x + 2}} = x + 2\)

LG c.

Tìm giá trị của \(x\) để giá trị của phân thức bằng \(1\).

Phương pháp giải:

Cho giá trị của phân thức rút gọn bằng \(1\) để tìm giá trị của \(x\); kết quả tìm được so sánh với điều kiện xác định của phân thức.

Lời giải chi tiết:

Điều kiện \(x\ne -2\), ta có: \(\dfrac{{{x^2} + 4{\rm{x}} + 4}}{{x + 2}}=x+2\) 

Để giá trị của phân thức đã cho bằng \(1\) thì:

\(x + 2 = 1 \Rightarrow x =  - 1 \) (thỏa mãn điều kiện xác định của \(x\))

Vậy \(x = -1\) thì giá trị của phân thức bằng \(1\).

LG d.

Có giá trị nào của \(x\) để giá trị của phân thức bằng \(0\) hay không?

Phương pháp giải:

Cho giá trị của phân thức rút gọn bằng \(0\) để tìm giá trị của \(x\); kết quả tìm được so sánh với điều kiện xác định của phân thức.

Lời giải chi tiết:

Điều kiện \(x\ne -2\), ta có: \(\dfrac{{{x^2} + 4{\rm{x}} + 4}}{{x + 2}}=x+2\)

Để giá trị của phân thức đã cho bằng \(0\) thì:

\(x + 2 = 0 \Rightarrow x =  - 2 \) (không thỏa mãn điều kiện xác định của \(x\)).

Vậy không có giá trị nào của \(x\) để phân thức đã cho có giá trị bằng \(0.\) 

soanvan.me