Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau trên C

LG a

z2 – 3z + 3 + i = 0

Lời giải chi tiết:

z2 – 3z + 3 + i = 0 có biệt thức là:

Δ = 32 – 4(3 + i) = -3 – 4i = (-1 + 2i )2

Nên nghiệm của nó là: 

\(\left\{ \matrix{
z_1={{3 + ( - 1 + 2i)} \over 2} = 1 + i \hfill \cr 
z_2={{3 - ( - 1 + 2i)} \over 2} = 2 - i \hfill \cr} \right.\)

LG b

\({z^2} - (cos\varphi  + i\sin \varphi )z + i\sin \varphi \cos \varphi  = 0\)

trong đó \(\varphi\) là số thực cho trước

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {z^2} - (cos\varphi + i\sin \varphi )z + i\sin \varphi \cos \varphi = 0 \cr 
& \Leftrightarrow {z^2} - \cos \varphi .z - i\sin \varphi .z + isin\varphi cos\varphi = 0 \cr 
& \Leftrightarrow z(z - cos\varphi ) - isin\varphi (z - cos\varphi ) = 0 \cr 
& \Leftrightarrow (z - cos\varphi )(z - isin\varphi ) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
z = \cos \varphi \hfill \cr 
z = i\sin \varphi \hfill \cr} \right. \cr} \)

Vậy \(S = {\rm{\{ cos}}\varphi {\rm{;}}\,i\sin \varphi )\).

Cách khác:

Ta có biệt số

∆=(cosφ+i sinφ )2-4i sinφ.cosφ

=cos2 φ+2i.cosφ.sinφ- sin2φ-4isinφ.cosφ

= cos(2φ)-i sin(2φ)

=cos(-2φ)+i sin(-2φ)

∆ có hai căn bậc hai là: cos(-φ)+i sin(-φ) và (-cos(-φ)-i sin(-φ)

Nên phương trình có nghiệm là:

  soanvan.me