Đề bài

Quy đồng mẫu các phân thức sau:

a) \( \dfrac{5}{2x +6};\; \dfrac{3}{x^{2}-9}\);

b) \( \dfrac{2x}{x^{2}-8x+16};\; \dfrac{x}{3x^{2}-12x}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết

a) Tìm mẫu thức chung:

\(2x + 6 = 2(x + 3)\)

\(x^2- 9 = (x -3)(x + 3)\)

Mẫu thức chung là: \(2(x - 3)(x + 3)\)

Nhân tử phụ thứ nhất là: \((x-3)\)

Nhân tử phụ thứ hai là: \(2\)

Quy đồng:

\( \dfrac{5}{2x +6}=\dfrac{5}{2(x+3)}\)\(\,=\dfrac{5(x-3)}{2(x-3)(x+3)}\)

\( \dfrac{3}{x^{2}-9}= \dfrac{3}{(x-3)(x+3)}\)\(\,= \dfrac{3.2}{2(x-3)(x+3)}\)\(\,=\dfrac{6}{2(x-3)(x+3)}\)

b) Tìm mẫu thức chung:

\({x^2}-{\rm{ }}8x{\rm{ }} + {\rm{ }}16{\rm{ }}  = {x^2} - 2.x.4 + {4^2}\)\(\,= {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}4} \right)^2}\)

\(3x^2– 12x = 3x(x - 4)\)

Mẫu thức chung là: \(3x(x - 4)^2\)

Nhân tử phụ thứ nhất là: \(3x\)

Nhân tử phụ thứ hai là: \((x-4)\)

Quy đồng:

\( \dfrac{2x}{x^{2}-8x+16}=\dfrac{2x}{(x-4)^{2}}\)\(\,=\dfrac{2x.3x}{3x(x-4)^{2}}=\dfrac{6x^{2}}{3x(x-4)^{2}}\)

\( \dfrac{x}{3x^{2}-12}=\dfrac{x}{3x(x-4)}=\dfrac{x(x-4)}{3x(x-4)^{2}}\)

soanvan.me