Đề bài
Cho \(\Delta ABC\) cân tại \(A.\) Trên các cạnh bên \(AB, AC\) lấy theo thứ tự các điểm \(D\) và \(E\) sao cho \(AD = AE.\)
a) Chứng minh rằng \(BDEC\) là hình thang cân.
b) Tính các góc của hình thang cân đó, biết rằng \(\widehat{A}=50^o\).
Phương pháp giải - Xem chi tiết
Sử dụng:
- Hình thang là tứ giác có hai cạnh đối song song.
- Hình thang cân là hình thang có hai góc kề với một đáy bằng nhau.
- Định lí tổng ba góc của một tam giác bằng \(180^o\).
- Tam giác cân có hai cạnh bên bằng nhau, hai góc đáy bằng nhau.
Lời giải chi tiết
a) Tam giác \(ABC\) cân nên ta có \(\widehat B = \widehat C =({180}^0 - \widehat A):2\) (1)
Tam giác \(ADE\) có \(AD = AE\) nên là tam giác cân,
suy ra \( \widehat{D_{1}}= \widehat{E_{1}}=({180}^0 - \widehat A):2\) (2)
Từ (1) và (2) suy ra \(\widehat B=\widehat{D_{1}}\), hai góc này ở vị trí đồng vị nên \(DE//BC\)
Vậy \(BDEC\) là hình thang, lại có hai góc kề một đáy bằng nhau nên là hình thang cân.
b) Ta có \(\widehat{A}=50^o\) nên \(\widehat{B} = \widehat{C} = \dfrac{180^{0}-50^{0}}{2} = 65^o\)
\( \widehat {{D_2}} = \widehat {{E_2}}= {180^0} - \widehat B \)\(= {180^0} - {65^0}= {115^0}\) (vì \( \widehat {{D_2}}\) và \(\widehat B\) trong cùng phía)
soanvan.me