Đề bài

Nếu một hình chữ nhật có chu vi là \(16\, (cm)\) và diện tích là \(12\, (cm^2)\) thì độ dài hai cạnh của nó bằng bao nhiêu?

(A) \(3\, (cm)\) và \(4\,(cm)\)

(B) \(2\, (cm)\) và \(6\,(cm)\)

(C) \(2\, (cm)\) và \(8\,(cm)\)

(D) Không tính được

Phương pháp giải - Xem chi tiết

Dựa vào công thức tính chu vi và diện tích của hình chữ nhật.

Hình chữ nhật có chiều dài \(a\) và chiều rộng \(b\) thì có chu vi \(P=2(a+b)\) và có diện tích \(S=a.b\)

Lời giải chi tiết

Gọi độ dài hai cạnh của hình chữ nhật là: \(a,\,b\) với \(0<b<a\)

Diện tích hình chữ nhật là \(12\, (cm^2)\) nên \(a.b=12\,(cm^2)\)

Do hình chữ nhật có chu vi là \(16\, (cm)\) nên ta có \(2.\left( {a + b} \right) = 16 \Leftrightarrow a+b=8\,(cm)\)

\(\Leftrightarrow b = 8 - a\)

Thay \(b=8-a\) vào \(a.b=12\) ta được:

\(\begin{array}{l}
a.\left( {8 - a} \right) = 12\\
\Leftrightarrow 8a - {a^2} = 12\\
\Leftrightarrow {a^2} - 8a + 12 = 0\\
\Leftrightarrow {a^2} - 2a - 6a + 12 = 0\\
\Leftrightarrow a\left( {a - 2} \right) - 6\left( {a - 2} \right) = 0\\
\Leftrightarrow \left( {a - 6} \right)\left( {a - 2} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
a - 6 = 0\\
a - 2 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
a = 6\\
a = 2
\end{array} \right.
\end{array}\)

Với \(a=6\) thì \(b=8-a=8-6=2\) (thỏa mãn điều kiện \(0<b<a\))

Với \(a=2\) thì \(b=8-a=8-2=6\) (không thỏa mãn điều kiện \(0<b<a\))

Vậy độ dài hai cạnh hình chữ nhật là \(2\, (cm)\) và \(6\,(cm)\)

Chọn (B)

soanvan.me