Câu hỏi 1 :

Cho phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có biệt thức $b = 2b';\Delta ' = b{'^2} - ac$. Phương trình đã cho có hai nghiệm phân biệt khi

  • A

    $\Delta ' > 0$

  • B

    $\Delta ' = 0$

  • C

    $\Delta ' \ge 0$

  • D

    $\Delta ' \le 0$

Đáp án của giáo viên lời giải hay : A

Lời giải chi tiết :

Xét phương trình bậc hai $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b = 2b'$ và biệt thức $\Delta ' = b{'^2} - ac.$

Trường hợp 1. Nếu $\Delta ' < 0$ thì phương trình vô nghiệm.

Trường hợp 2. Nếu $\Delta ' = 0$ thì phương trình có nghiệm kép ${x_1} = {x_2} =  - \dfrac{{b'}}{a}$

Trường hợp 3. Nếu $\Delta ' > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1,}}_2 =  - \dfrac{{b' \pm \sqrt {\Delta '} }}{a}$

Câu hỏi 2 :

Cho phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có biệt thức $b = 2b';\Delta ' = b{'^2} - ac$. Nếu $\Delta ' = 0$ thì

  • A

    Phương trình  có hai nghiệm phân biệt

  • B

    Phương trình  có nghiệm kép ${x_1} = {x_2} =  - \dfrac{b}{a}$

  • C

    Phương trình  có nghiệm kép ${x_1} = {x_2} =  - \dfrac{{b'}}{a}$

  • D

    Phương trình  có nghiệm kép ${x_1} = {x_2} =  - \dfrac{{b'}}{{2a}}$

Đáp án của giáo viên lời giải hay : C

Lời giải chi tiết :

Xét phương trình bậc hai $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b = 2b'$ và biệt thức $\Delta ' = b{'^2} - ac.$

 Nếu $\Delta ' = 0$ thì phương trình có nghiệm kép ${x_1} = {x_2} =  - \dfrac{{b'}}{a}$

Câu hỏi 3 :

Tính $\Delta '$ và tìm số nghiệm của phương trình \(7{x^2} - 12x + 4 = 0\) .

  • A

    $\Delta ' = 6$ và phương trình có hai nghiệm phân biệt

  • B

    $\Delta ' = 8$ và phương trình có hai nghiệm phân biệt

  • C

    $\Delta ' = 8$ và phương trình có nghiệm kép 

  • D

    $\Delta ' = 0$ và phương trình có hai nghiệm phân biệt

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Xét phương trình bậc hai \(a{x^2} + bx + c = 0\) với $b = 2b'$và  \(\Delta ' = {\left( {b'} \right)^2} - ac\)

Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm

Trường hợp 2. Nếu \(\Delta ' = 0\)  thì phương trình có nghiệm kép \({x_1} = {x_2} = \dfrac{{ - b'}}{a}\)

Trường hợp 3. Nếu \(\Delta ' > 0\)  thì phương trình có hai nghiệm phân biệt \({x_{1,2}} = \dfrac{{ - b' \pm \sqrt {\Delta '} }}{a}\)

Lời giải chi tiết :

Phương trình \(7{x^2} - 12x + 4 = 0\) có $a = 7;b' =  - 6;c = 4$ suy ra

$\Delta ' = {\left( {b'} \right)^2} - ac = {\left( { - 6} \right)^2} - 4.7 = 8 > 0$

Nên phương trình có hai nghiệm phân biệt.

Câu hỏi 4 :

Tìm $m$ để phương trình $2m{x^2} - \left( {2m + 1} \right)x - 3 = 0$ có nghiệm là $x = 2$.

  • A

    $m =  - \dfrac{5}{4}$

  • B

    $m = \dfrac{1}{4}$

  • C

    $m = \dfrac{5}{4}$

  • D

    $m =  - \dfrac{1}{4}$

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Thay $x = {x_0}$ vào phương trình đã cho ta được phương trình ẩn $m$. Giải phương trình ta tìm được $m$.

Lời giải chi tiết :

Thay $x = 2$ vào phương trình $2m{x^2} - \left( {2m + 1} \right)x - 3 = 0$ ta được: $2m{.2^2} - \left( {2m + 1} \right).2 - 3 = 0 \Leftrightarrow 4m - 5 = 0 \Leftrightarrow m = \dfrac{5}{4}$

Vậy $m = \dfrac{5}{4}$ là giá trị cần tìm.

Câu hỏi 5 :

Tính $\Delta '$ và tìm nghiệm của phương trình \(2{x^2} + 2\sqrt {11} x + 3 = 0\) .

  • A

    $\Delta ' = 5$ và phương trình có hai nghiệm ${x_1} = {x_2} = \dfrac{{\sqrt 1 1}}{2}$

  • B

    $\Delta ' = 5$ và phương trình có hai nghiệm ${x_1} = \dfrac{- 2\sqrt {11}  + \sqrt 5}{2}$ ;${x_2} = \dfrac{-2 \sqrt {11}  - \sqrt 5}{2}$

  • C

    $\Delta ' = \sqrt 5 $ và phương trình có hai nghiệm ${x_1} = \sqrt {11}  + \sqrt 5 ;{x_2} = \sqrt {11}  - \sqrt 5 $

  • D

    $\Delta ' = 5$ và phương trình có hai nghiệm ${x_1} =  \dfrac{- \sqrt {11}  + \sqrt 5}{2}$ ;${x_2} =  \dfrac{- \sqrt {11}  - \sqrt 5}{2}$

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Xét phương trình bậc hai \(a{x^2} + bx + c = 0\) với $b = 2b'$và  \(\Delta ' = {\left( {b'} \right)^2} - ac\)

Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm

Trường hợp 2. Nếu \(\Delta ' = 0\)  thì phương trình có nghiệm kép \({x_1} = {x_2} = \dfrac{{ - b'}}{a}\)

Trường hợp 3. Nếu \(\Delta ' > 0\)  thì phương trình có hai nghiệm phân biệt \({x_{1,2}} = \dfrac{{ - b' \pm \sqrt {\Delta '} }}{a}\)

Lời giải chi tiết :

Phương trình \(2{x^2} + 2\sqrt {11} x + 3 = 0\) có $a = 2;b' = \sqrt {11} ;c = 3$ suy ra

$\Delta ' = {\left( {b'} \right)^2} - ac = 11 - 2.3 = 5 > 0$ nên phương trình có hai nghiệm phân biệt

${x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a} =  \dfrac{- \sqrt {11}  + \sqrt 5}{2}$

${x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a} = \dfrac{- \sqrt {11}  - \sqrt 5}{2} $.

Câu hỏi 6 :

Cho phương trình \(m{x^2} - 2\left( {m - 1} \right)x + m - 3 = 0\). Với giá trị nào dưới đây của $m$ thì phương trình không có hai nghiệm phân biệt.

  • A

    $m =  - \dfrac{5}{4}$

  • B

    $m = \dfrac{1}{4}$

  • C

    $m = \dfrac{5}{4}$

  • D

    $m =  - \dfrac{1}{4}$

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Xét phương trình bậc hai dạng $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b = 2b'$

Khi đó, phương trình có hai nghiệm phân biệt\( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\end{array} \right.\)

Lời giải chi tiết :

Phương trình \(m{x^2} - 2\left( {m - 1} \right)x + m - 3 = 0\) có $a = m;b' =  - \left( {m - 1} \right);c = m - 3$

Suy ra $\Delta ' = {\left[ { - \left( {m - 1} \right)} \right]^2} - m\left( {m - 3} \right)$

$= m + 1$

Để phương trình có hai nghiệm phân biệt thì $\left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m >  - 1\end{array} \right.$

Nên với đáp án $A$: $m=-\dfrac{5}{4}<-1$ thì phương trình không có hai nghiệm phân biệt.

Câu hỏi 7 :

Cho phương trình \(\left( {m - 3} \right){x^2} - 2mx + m - 6 = 0\). Tìm các giá trị của $m$ để phương trình vô nghiệm

  • A

    $m <  - 2$

  • B

    $m < 2$

  • C

    $m < 3$

  • D

    $m <  - 3$

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Xét phương trình bậc hai dạng $a{x^2} + bx + c = 0$ với $b = 2b'$

TH1: $a = 0$

TH2: $a \ne 0$. Khi đó, phương trình vô nghiệm\( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' < 0\end{array} \right.\)

Lời giải chi tiết :

Phương trình \(\left( {m - 3} \right){x^2} - 2mx + m - 6 = 0\) có $a = m - 3;b' =  - m;c = m - 6$

Suy ra $\Delta ' = {m^2} - \left( {m - 3} \right)\left( {m - 6} \right) = 9m - 18$

TH1: $m - 3 = 0 \Leftrightarrow m = 3 \Rightarrow  - 6x - 3 = 0 \Leftrightarrow x =  - \dfrac{1}{2}$

TH2: $m - 3 \ne 0 \Leftrightarrow m \ne 3$

Để phương trình có vô nghiệm phân biệt thì $\left\{ \begin{array}{l}a \ne 0\\\Delta ' < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 3\\9m - 18 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 3\\m < 2\end{array} \right. \Rightarrow m < 2$

Vậy $m < 2$ là giá trị cần tìm.

Câu hỏi 8 :

Cho phương trình \((m - 2){x^2} - 2(m + 1)x + m = 0\). Tìm các giá trị của $m$ để phương trình  có một nghiệm

  • A

    $m =  - 2$

  • B

    $m = 2;m =  - \dfrac{1}{4}$

  • C

    $m =  - \dfrac{1}{4}$

  • D

    $m \ne 2$

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Xét phương trình bậc hai dạng $a{x^2} + bx + c = 0$ với $b = 2b'$

TH1: $a = 0$

TH2: $a \ne 0$. Khi đó, phương trình có nghiệm kép\( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' = 0\end{array} \right.\)

Lời giải chi tiết :

Phương trình \((m - 2){x^2} - 2(m + 1)x + m = 0\) có $a = m - 2;b' =  - \left( {m + 1} \right);c = m$

Suy ra $\Delta ' = {\left( {m + 1} \right)^2} - \left( {m - 2} \right)m = 4m + 1$

TH1: $m - 2 = 0 \Leftrightarrow m = 2 \Rightarrow  - 6x + 2 = 0 \Leftrightarrow x = \dfrac{1}{3}$. Với $m = 2$ phương trình có một nghiệm $x = \dfrac{1}{3}$

TH2: $m - 2 \ne 0 \Leftrightarrow m \ne 2$

Để phương trình có nghiệm kép thì $\left\{ \begin{array}{l}a \ne 0\\\Delta ' = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 2\\4m + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 2\\m =  - \dfrac{1}{4}\end{array} \right. \Rightarrow m =  - \dfrac{1}{4}$

Vậy $m =  - \dfrac{1}{4}$ và $m = 2$ là giá trị cần tìm.

Câu hỏi 9 :

Tìm các giá trị của $m$ để phương trình \(m{x^2} - 2\left( {m - 1} \right)x + m + 2 = 0\)  có nghiệm

  • A

    $m \le \dfrac{1}{4}$

  • B

    $m = 0$

  • C

    $m \le \dfrac{1}{4};m \ne 0$

  • D

    $m \ne \dfrac{1}{4}$

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Xét phương trình bậc hai dạng $a{x^2} + bx + c = 0$ với $b = 2b'$

TH1: $a = 0$

TH2: $a \ne 0$. Khi đó, phương trình có nghiệm \( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' \ge 0\end{array} \right.\)

Lời giải chi tiết :

Phương trình \(m{x^2} - 2\left( {m - 1} \right)x + m + 2 = 0\) có $a = m;b' =  - \left( {m - 1} \right);c = m + 2$

Suy ra $\Delta ' = {\left( {m - 1} \right)^2} - m\left( {m + 2} \right) =  - 4m + 1$

TH1: $m = 0$ ta có phương trình $2x + 2 = 0 \Leftrightarrow x =  - 1$.

TH2: $m \ne 0$. Phương trình có nghiệm khi $\left\{ \begin{array}{l}m \ne 0\\\Delta ' \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\ - 4m + 1 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \le \dfrac{1}{4}\end{array} \right.$

Kết hợp cả hai trường hợp ta có với $m \le \dfrac{1}{4}$ thì phương trình có nghiệm.

Câu hỏi 10 :

Trong trường hợp phương trình \( - {x^2} + 2mx - {m^2} - m = 0\) có hai nghiệm phân biệt. Hai nghiệm của phương trình là

  • A

    ${x_1} = m - \sqrt { - m} ;{x_2} = m + \sqrt { - m} $

  • B

    ${x_1} = m - \sqrt m ;{x_2} = m + \sqrt m $

  • C

    ${x_1} = m - 2\sqrt { - m} ;{x_2} = m + 2\sqrt { - m} $

  • D

    ${x_1} = 2m - \sqrt { - m} ;{x_2} = 2m + \sqrt { - m} $

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Xét phương trình bậc hai $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b = 2b'$ và biệt thức $\Delta ' = b{'^2} - ac.$

Nếu $\Delta ' > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1,2}}=  \dfrac{{-b' \pm \sqrt {\Delta '} }}{a}$

Lời giải chi tiết :

Phương trình \( - {x^2} + 2mx - {m^2} - m = 0\) có $a =  - 1;b' = m;c =  - {m^2} - m$

Suy ra $\Delta ' = {m^2} - \left( { - 1} \right).\left( { - {m^2} - m} \right) =  - m$

Phương trình có hai nghiệm phân biệt khi $ - m > 0 \Leftrightarrow m < 0$

Khi đó ${x_1} = \dfrac{{ - m + \sqrt { - m} }}{{ - 1}} = m - \sqrt { - m} $ ; ${x_2} = \dfrac{{ - m - \sqrt { - m} }}{{ - 1}} = m + \sqrt { - m} $.

Câu hỏi 11 :

Cho phương trình \({x^2} + \left( {a + b + c} \right)x + \left( {ab + bc + ca} \right) = 0\) với \(a,b,c\) là ba cạnh của một tam giác. Khẳng định nào sau đây là đúng?

  • A

    Phương trình luôn có hai nghiệm phân biệt

  • B

    Phương trình luôn có nghiệm kép

  • C

    Chưa đủ điều kiện để kết luận

  • D

    Phương trình luôn vô nghiệm.

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

+) Sử dụng điều kiện có nghiệm của phương trình bậc hai

+) Sử dụng bất đẳng thức tam giác để đánh giá $\Delta $.

Lời giải chi tiết :

Phương trình \({x^2} + \left( {a + b + c} \right)x + \left( {ab + bc + ca} \right) = 0\)

Có $\Delta  = {\left( {a + b + c} \right)^2} - 4\left( {ab + bc + ca} \right)$$ = {a^2} + {b^2} + {c^2} - 2ab - 2ac - 2bc = {\left( {a - b} \right)^2} - {c^2} + {\left( {b - c} \right)^2} - {a^2} + {\left( {a - c} \right)^2} - {b^2}$

$ = \left( {a - b - c} \right)\left( {a + c - b} \right) + \left( {b - c - a} \right)\left( {a + b - c} \right) + \left( {a - c - b} \right)\left( {a - c + b} \right)$

Mà $a,b,c$ là ba cạnh của tam giác nên $\left\{ \begin{array}{l}a - b - c < 0\\b - c - a < 0\\a - c - b < 0\end{array} \right.;\left\{ \begin{array}{l}a + c - b > 0\\a + b - c > 0\end{array} \right.$

Nên $\Delta  < 0$ với mọi $a,b,c$

Hay phương trình luôn vô nghiệm với mọi $a,b,c$.

Câu hỏi 12 :

Tìm các giá trị của tham số \(m\) để phương trình \({x^2} - 2\left( {m + 5} \right)x + {m^2} + 3m - 6 = 0\) có hai nghiệm phân biệt.

  • A
    \(m >  - \dfrac{{31}}{7}\)
  • B
    \(m < - \dfrac{31}{7}\)
  • C
    \(m \le - \dfrac{31}{7}\)
  • D
    \(m \ge - \dfrac{31}{7}\)

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Phương trình \(ax^2+bx+c=0\) với \(a\ne 0\) có hai nghiệm phân biệt khi \(\Delta'>0\).

Lời giải chi tiết :

Xét phương trình \({x^2} - 2\left( {m + 5} \right)x + {m^2} + 3m - 6 = 0\) có \(a = 1;b' =  - \left( {m + 5} \right);c = {m^2} + 3m - 6\)

Ta có: \(\Delta ' = {\left[ { - \left( {m + 5} \right)} \right]^2} - \left( {{m^2} + 3m - 6} \right)\)

\(\begin{array}{l} = {m^2} + 10m + 25 - {m^2} - 3m + 6\\ = 7m + 31\end{array}\)

Để phương trình đã cho có hai nghiệm phân biệt thì \(\left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 \ne 0\left( {ld} \right)\\7m + 31 > 0\end{array} \right. \Leftrightarrow 7m >  - 31 \Leftrightarrow m > \dfrac{{ - 31}}{7}\)

Vậy với \(m >  - \dfrac{{31}}{7}\) thì phương trình đã cho có hai nghiệm phân biệt.

Câu hỏi 13 :

Tìm tất cả các giá trị thực của tham số m để phương trình \(\left( {x - 1} \right)\left( {{x^2} - 4mx - 4} \right) = 0\) có ba nghiệm phân biệt.

  • A
    \(m \in \mathbb{R}\)
  • B
    \(m \ne 0\)
  • C

    \(m \ne \dfrac{3}{4}\)

  • D

    \(m \ne  - \dfrac{3}{4}\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

+) \(\left( {x - 1} \right)\left( {{x^2} - 4mx - 4} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\,\,\,\left( 1 \right)\\{x^2} - 4mx - 4 = 0\,\,\left( 2 \right)\end{array} \right.\)

+) Phương trình đã cho có 3 nghiệm phân biệt khi và chỉ khi phương trình (2) có 2 nghiệm phân biệt không trùng với phương trình (1).

Lời giải chi tiết :

Ta có : \(\left( {x - 1} \right)\left( {{x^2} - 4mx - 4} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\{x^2} - 4mx - 4 = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\g\left( x \right) = {x^2} - 4mx - 4 = 0\end{array} \right.\)

Để phương trình ban đầu có 3 nghiệm phân biệt thì :

\(\left\{ \begin{array}{l}{\Delta _g}' = {\left( {2m} \right)^2} + 4 > 0\\g\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{m^2} + 4 > 0\,\,\left( {luon\,\,dung} \right)\\1 - 4m - 4 \ne 0\end{array} \right. \Leftrightarrow m \ne  - \dfrac{3}{4}\).

Câu hỏi 14 :

Cho Parabol \((P):y=\dfrac{1}{4}{{x}^{2}}\) và đường thẳng \((d):y=mx-2m+1\). Tìm m để (P) và (d) tiếp xúc nhau.

  • A
     m = – 2                                   
  • B
    m = 2                           
  • C
    m = – 1                                   
  • D
    m = 1

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Lập phương trình hoành độ giao điểm của (P) và (d). Áp dụng điều kiện để phương trình bậc hai có nghiệm kép. Từ đó tìm giá trị của tham số m.

Lời giải chi tiết :

 Xét phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{1}{4}{{x}^{2}}=mx-2m+1\Leftrightarrow \dfrac{1}{4}{{x}^{2}}-mx+2m-1=0\Leftrightarrow {{x}^{2}}-4mx+8m-4=0\,\,(*)\)

(P) và (d) tiếp xúc nhau khi và chỉ khi phương trình (*) có nghiệm kép

\(\Leftrightarrow \Delta '=0\Leftrightarrow {{(-2m)}^{2}}-(8m-4)=0\Leftrightarrow 4{{m}^{2}}-8m+4=0\Leftrightarrow {{(2m-2)}^{2}}=0\Leftrightarrow m=1\)

Câu hỏi 15 :

Cho hàm số \(y=\dfrac{1}{2}{{x}^{2}}\) có đồ thị (P) và đường thẳng (d): \(y=3mx-2\).Tìm m để đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt.

  • A

    \(m<\dfrac{-2}{3}\)                

  • B

     \(m>\dfrac{2}{3}\)

  • C

    \(m<\dfrac{-2}{3}\) hoặc \(m>\dfrac{2}{3}\)                  

  • D

     \(\dfrac{-2}{3}<m<\dfrac{2}{3}\)

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Lập phương trình hoành độ giao điểm của (P) và (d). Áp dụng điều kiện để phương trình bậc hai có hai nghiệm phân biệt. Từ đó tìm giá trị của tham số m.

Lời giải chi tiết :

Xét phương trình hoành độ giao điểm của (P) và (d):

\(\begin{align}  & \,\,\,\,\,\,\,\frac{1}{2}{{x}^{2}}=3mx-2 \\  & \Leftrightarrow {{x}^{2}}-6mx+4=0\,\,\,\,\,\,\,(1) \\ \end{align}\)

Để (d) và (P) có 2 giao điểm thì phương trình (1) có 2 nghiệm phân biệt:

\(\begin{array}{l}
\Leftrightarrow \Delta ' > 0\\
\Leftrightarrow 9{m^2} - 4 > 0\\
\Leftrightarrow (3m - 2)(3m + 2) > 0
\end{array}\)

\(\Leftrightarrow m<\dfrac{-2}{3}\) hoặc \(m>\dfrac{2}{3}\).

Vậy với \(m<\dfrac{-2}{3}\) hoặc \(m>\dfrac{2}{3}\) thì đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt.

Câu hỏi 16 :

Cho phương trình \({x^2} + 4x + 2m + 1 = 0\) (\(m\) là tham số).

Câu 16.1

Giải phương trình với \(m = 1\).

  • A
    \(S = \left \{ - 1; - 3 \right \}\)
  • B
    \(S = \left \{ - 1; 3 \right \}\)
  • C
    \(S = \left \{ 1; - 3 \right \}\)
  • D
    \(S = \left \{ 1; 3 \right \}\)

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Thay m=1 vào phương trình rồi dùng công thức nghiệm thu gọn.

Lời giải chi tiết :

Với \(m = 1\), phương trình đã cho trở thành: \({x^2} + 4x + 3 = 0\).

Ta có: \(\Delta'=2^2-3=1>0\) nên phương trình có hai nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} =\dfrac{-2+1}{1} =  - 1\\{x_2} =  - \dfrac{-2-1}{1} =  - 3\end{array} \right.\).

Vậy khi \(m = 1\) thì tập nghiệm của phương trình là \(S = \left\{ { - 1; - 3} \right\}\).

Câu 16.2

Tìm \(m\) để phương trình có nghiệm kép.

  • A
    \(m = 1\)
  • B
    \(m = \dfrac{1}{2}\)
  • C
    \(m = \dfrac{3}{2}\)
  • D
    \(m = \dfrac{5}{2}\)

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Phương trình \(ax^2+bx+c=0\) (với \(a\ne 0)\) có nghiệm kép khi \(\Delta'=0\)

Lời giải chi tiết :

Phương trình \({x^2} + 4x + 2m + 1 = 0\) có \(\Delta ' = {2^2} - \left( {2m + 1} \right) = 4 - 2m - 1 = 3 - 2m\).

Để phương trình có nghiệm kép thì \(\Delta  = 3 - 2m = 0 \Leftrightarrow m = \dfrac{3}{2}\).

Vậy với \(m = \dfrac{3}{2}\) thì phương trình đã cho có nghiệp kép.

Câu hỏi 17 :

Với giá trị nào của m thì hệ phương trình sau có nghiệm duy nhất  \(\left\{ \begin{array}{l}x + y = 8\\\dfrac{x}{y} + \dfrac{y}{x} = m\end{array} \right.\)

  • A
    \(m = 4\)
  • B
    \(m = - 2\)
  • C
    \(m = 2\)
  • D
    \(m = 1\)

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Giải hệ phương trình bằng phương pháp thế.

Lời giải chi tiết :

Điều kiện \(x \ne 0;y \ne 0\)
\(\begin{array}{l}\left\{ \begin{array}{l}x + y = 8\\\dfrac{x}{y} + \dfrac{y}{x} = m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 8 - x\\{x^2} + {y^2} = mxy\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 8 - x\\{x^2} + {(8 - x)^2} = mx(8 - x)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 8 - x\\{x^2} + 64 - 16x + {x^2} = 8mx - m{x^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 8 - x\\(m + 2){x^2} - 8x(m + 2) + 64 = 0\end{array} \right.\end{array}\)
Hệ phương trình đã cho có nghiệm duy nhất \(\Leftrightarrow \) phương trình \((m + 2){x^2} - 8x(m + 2) + 64 = 0\) \((I)\) có nghiệm duy nhất thỏa mãn \(x \ne 0;x \ne 8(y \ne 0)\)
Nếu \(m=-2 \Rightarrow (I) \Leftrightarrow 64=0\) (vô lí) \( \Rightarrow \) hệ phương trình vô nghiệm với \(m = - 2\)
Nếu \(m \ne - 2 \Rightarrow (I)\) là phương trình bậc hai 1 ẩn,để phương trình này có nghiệm duy nhất thì \(\begin{array}{l}{\Delta'} = 0 \Leftrightarrow 16{(m + 2)^2} - 64(m + 2) = 0 \Leftrightarrow {(m + 2)^2} - 4(m + 2) = 0\\ \Leftrightarrow \left\{ \begin{array}{l}m + 2 = 0\\m + 2 = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = - 2\\m = 2\end{array} \right.\end{array}\)
Do \(m \ne - 2\) nên chỉ có \(m = 2\) là thỏa mãn để phương trình \((I)\) có nghiệm duy nhất
Nghiệm đó là \({x_0} = 4\) (thỏa mãn \(x \ne 0;x \ne 8\))
Với \(x = 4\) thay vào ta tìm được \(y=4\)
Vậy \(m = 2\) là giá trị cần tìm.