Thực hiện phép tính \(\dfrac{{65}}{{91}} + \dfrac{{ - 44}}{{55}}\) ta được kết quả là
-
A
$\dfrac{{ - 53}}{{35}}$
-
B
\(\dfrac{{51}}{{35}}\)
-
C
\(\dfrac{{ - 3}}{{35}}\)
-
D
\(\dfrac{3}{{35}}\)
Đáp án của giáo viên lời giải hay : C
Bước 1: Rút gọn các phân số đến tối giản (nếu có thể)
Bước 2: Quy đồng mẫu số các phân số sau khi rút gọn
Bước 3: Thực hiện cộng hai phân số cùng mẫu ta cộng tử số với tử số, giữ nguyên mẫu số
\(\dfrac{{65}}{{91}} + \dfrac{{ - 44}}{{55}} = \dfrac{5}{7} + \dfrac{{ - 4}}{5}\)\( = \dfrac{{25}}{{35}} + \dfrac{{ - 28}}{{35}} = \dfrac{{ - 3}}{{35}}\)
Chọn câu đúng.
-
A
$\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} > 1$
-
B
$\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} < 0$
-
C
$\dfrac{8}{{11}} + \dfrac{7}{{ - 11}} > 1$
-
D
$\dfrac{{ - 4}}{{11}} + \dfrac{{ - 7}}{{11}} > - 1$
Đáp án của giáo viên lời giải hay : B
Thực hiện các phép tính ở mỗi đáp án và kết luận.
Đáp án A: $\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} = \dfrac{{ - 4}}{{11}} + \dfrac{{ - 7}}{{11}} = \dfrac{{ - 11}}{{11}} = - 1 < 1$ nên \(A\) sai
Đáp án B: $\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} = \dfrac{{ - 4}}{{11}} + \dfrac{{ - 7}}{{11}} = \dfrac{{ - 11}}{{11}} = - 1 < 0$ nên \(B\) đúng.
Đáp án C: $\dfrac{8}{{11}} + \dfrac{7}{{ - 11}} = \dfrac{8}{{11}} + \dfrac{{ - 7}}{{11}} = \dfrac{1}{{11}} < 1$ nên \(C\) sai.
Đáp án D: $\dfrac{{ - 4}}{{11}} + \dfrac{{ - 7}}{{11}} = \dfrac{{ - 11}}{{11}} = - 1$ nên \(D\) sai.
Tìm \(x\) biết \(x = \dfrac{3}{{13}} + \dfrac{9}{{20}}.\)
-
A
\(\dfrac{{12}}{{33}}\)
-
B
\(\dfrac{{177}}{{260}}\)
-
C
\(\dfrac{{187}}{{260}}\)
-
D
\(\dfrac{{177}}{{26}}\)
Đáp án của giáo viên lời giải hay : B
Bước 1: Quy đồng mẫu số hai phân số
Bước 2: Thực hiện cộng hai phân số cùng mẫu
\(\dfrac{3}{{13}} + \dfrac{9}{{20}} = \dfrac{{60}}{{260}} + \dfrac{{117}}{{260}} = \dfrac{{177}}{{260}}\)
Vậy \(x = \dfrac{{177}}{{260}}\)
Tính hợp lý biểu thức \(\dfrac{{ - 9}}{7} + \dfrac{{13}}{4} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{3}{4}\) ta được kết quả là
-
A
$\dfrac{9}{5}$
-
B
\(\dfrac{{11}}{5}\)
-
C
\(\dfrac{{ - 11}}{5}\)
-
D
\(\dfrac{{ - 1}}{5}\)
Đáp án của giáo viên lời giải hay : A
Nhóm các số hạng thích hợp thành một tổng có thể tính.
\(\dfrac{{ - 9}}{7} + \dfrac{{13}}{4} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{3}{4}\)
\( = \left( {\dfrac{{ - 9}}{7} + \dfrac{{ - 5}}{7}} \right) + \left( {\dfrac{{13}}{4} + \dfrac{3}{4}} \right) + \dfrac{{ - 1}}{5}\)
\( = \dfrac{{ - 14}}{7} + \dfrac{{16}}{4} + \dfrac{{ - 1}}{5}\)
\( = \left( { - 2} \right) + 4 + \dfrac{{ - 1}}{5}\)
\( = 2 + \dfrac{{ - 1}}{5}\)
\( = \dfrac{{10}}{5} + \dfrac{{ - 1}}{5}\)
\( = \dfrac{9}{5}\)
Cho \(A = \left( {\dfrac{1}{4} + \dfrac{{ - 5}}{{13}}} \right) + \left( {\dfrac{2}{{11}} + \dfrac{{ - 8}}{{13}} + \dfrac{3}{4}} \right)\). Chọn câu đúng.
-
A
$A > 1$
-
B
\(A = \dfrac{2}{{11}}\)
-
C
\(A = 1\)
-
D
\(A = 0\)
Đáp án của giáo viên lời giải hay : B
Áp dụng tính chất giao hoán và kết hợp của phép cộng phân số, gộp các cặp phân số có tổng bằng $0$ hoặc bằng $1$ lại thành từng nhóm.
\(A = \left( {\dfrac{1}{4} + \dfrac{{ - 5}}{{13}}} \right) + \left( {\dfrac{2}{{11}} + \dfrac{{ - 8}}{{13}} + \dfrac{3}{4}} \right)\)
\(A = \dfrac{1}{4} + \dfrac{{ - 5}}{{13}} + \dfrac{2}{{11}} + \dfrac{{ - 8}}{{13}} + \dfrac{3}{4}\)
\(A = \left( {\dfrac{1}{4} + \dfrac{3}{4}} \right) + \left( {\dfrac{{ - 5}}{{13}} + \dfrac{{ - 8}}{{13}}} \right) + \dfrac{2}{{11}}\)
\(A = 1 + \left( { - 1} \right) + \dfrac{2}{{11}}\)
\(A = \dfrac{2}{{11}}\)
Cho \(M = \left( {\dfrac{{21}}{{31}} + \dfrac{{ - 16}}{7}} \right) + \left( {\dfrac{{44}}{{53}} + \dfrac{{10}}{{31}}} \right) + \dfrac{9}{{53}}\) và \(N = \dfrac{1}{2} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{1}{6} + \dfrac{{ - 3}}{{35}} + \dfrac{1}{3} + \dfrac{1}{{41}}\). Chọn câu đúng.
-
A
$M = \dfrac{2}{7};N = \dfrac{1}{{41}}$
-
B
$M = 0;N = \dfrac{1}{{41}}$
-
C
\(M = \dfrac{{ - 16}}{7};N = \dfrac{{83}}{{41}}\)
-
D
$M = - \dfrac{2}{7};N = \dfrac{1}{{41}}$
Đáp án của giáo viên lời giải hay : D
Áp dụng tính chất giao hoán và kết hợp của phép cộng phân số, gộp các cặp phân số có tổng bằng $0$ hoặc bằng $1$ lại thành từng nhóm.
\(M = \left( {\dfrac{{21}}{{31}} + \dfrac{{ - 16}}{7}} \right) + \left( {\dfrac{{44}}{{53}} + \dfrac{{10}}{{31}}} \right) + \dfrac{9}{{53}}\)
\(M = \dfrac{{21}}{{31}} + \dfrac{{ - 16}}{7} + \dfrac{{44}}{{53}} + \dfrac{{10}}{{31}} + \dfrac{9}{{53}}\)
\(M = \left( {\dfrac{{21}}{{31}} + \dfrac{{10}}{{31}}} \right) + \left( {\dfrac{{44}}{{53}} + \dfrac{9}{{53}}} \right) + \dfrac{{ - 16}}{7}\)
\(M = 1 + 1 + \dfrac{{ - 16}}{7}\)
\(M = 2 + \dfrac{{ - 16}}{7}\)
\(M = \dfrac{{ - 2}}{7}\)
\(N = \dfrac{1}{2} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{1}{6} + \dfrac{{ - 3}}{{35}} + \dfrac{1}{3} + \dfrac{1}{{41}}\)
\(N = \left( {\dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{3}} \right) + \left( {\dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{{ - 3}}{{35}}} \right) + \dfrac{1}{{41}}\)
\(N = \dfrac{{3 + 1 + 2}}{6} + \dfrac{{\left( { - 7} \right) + \left( { - 25} \right) + \left( { - 3} \right)}}{{35}} + \dfrac{1}{{41}}\)
\(N = 1 + \left( { - 1} \right) + \dfrac{1}{{41}}\)
\(N = \dfrac{1}{{41}}\)
Tìm \(x \in Z\) biết \(\dfrac{5}{6} + \dfrac{{ - 7}}{8} \le \dfrac{x}{{24}} \le \dfrac{{ - 5}}{{12}} + \dfrac{5}{8}\).
-
A
\(x \in \left\{ {0;1;2;3;4} \right\}\)
-
B
\(x \in \left\{ { - 1;0;1;2;3;4;5} \right\}\)
-
C
\(x \in \left\{ { - 1;0;1;2;3;4} \right\}\)
-
D
\(x \in \left\{ {0;1;2;3;4;5} \right\}\)
Đáp án của giáo viên lời giải hay : B
Tính các tổng đã cho ở mỗi vế rồi suy ra \(x\) dựa vào quy tắc so sánh hai phân số cùng mẫu số dương, phân số nào lớn hơn thì có tử số lớn hơn.
\(\dfrac{5}{6} + \dfrac{{ - 7}}{8} \le \dfrac{x}{{24}} \le \dfrac{{ - 5}}{{12}} + \dfrac{5}{8}\)
\(\dfrac{{ - 1}}{{24}} \le \dfrac{x}{{24}} \le \dfrac{5}{{24}}\)
\( - 1 \le x \le 5\)
\(x \in \left\{ { - 1;0;1;2;3;4;5} \right\}\)
Tìm tập hợp các số nguyên \(n\) để \(\dfrac{{n - 8}}{{n + 1}} + \dfrac{{n + 3}}{{n + 1}}\) là một số nguyên
-
A
\(n \in \left\{ {1; - 1;7; - 7} \right\}\)
-
B
\(n \in \left\{ {0;6} \right\}\)
-
C
\(n \in \left\{ {0; - 2;6; - 8} \right\}\)
-
D
\(n \in \left\{ { - 2;6; - 8} \right\}\)
Đáp án của giáo viên lời giải hay : C
- Rút gọn biểu thức bài cho rồi chia tách về dạng \(a \pm \dfrac{b}{{n + 1}}\) với \(a,b \in Z\)
- Để giá trị biểu thức là một số nguyên thì \(n + 1 \in Ư\left( b \right)\)
Ta có:
\(\dfrac{{n - 8}}{{n + 1}} + \dfrac{{n + 3}}{{n + 1}}\) \( = \dfrac{{n - 8 + n + 3}}{{n + 1}}\) \( = \dfrac{{2n - 5}}{{n + 1}}\) \( = \dfrac{{\left( {2n + 2} \right) - 7}}{{n + 1}}\) \( = \dfrac{{2\left( {n + 1} \right) - 7}}{{n + 1}}\) \( = \dfrac{{2\left( {n + 1} \right)}}{{n + 1}} - \dfrac{7}{{n + 1}}\) \( = 2 - \dfrac{7}{{n + 1}}\)
Yêu cầu bài toán thỏa mãn nếu \(\dfrac{7}{{n + 1}} \in Z\) hay \(n + 1 \in Ư\left( 7 \right) = \left\{ { \pm 1; \pm 7} \right\}\)
Ta có bảng:
Vậy \(n \in \left\{ {0; - 2;6; - 8} \right\}\)
Có bao nhiêu số nguyên \(x\) thỏa mãn \(\dfrac{{15}}{{41}} + \dfrac{{ - 138}}{{41}} \le x < \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{6}?\)
-
A
$6$
-
B
\(3\)
-
C
\(5\)
-
D
\(4\)
Đáp án của giáo viên lời giải hay : D
Tính các tổng ở mỗi vế rồi suy ra tập hợp giá trị của \(x\)
\(\dfrac{{15}}{{41}} + \dfrac{{ - 138}}{{41}} \le x < \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{6}\)
\( - 3 \le x < 1\)
\(x \in \left\{ { - 3; - 2; - 1;0} \right\}\)
Vậy có tất cả \(4\) giá trị của \(x\)
Tính tổng \(A = \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{{12}} + \ldots + \dfrac{1}{{99.100}}\) ta được
-
A
$S > \dfrac{3}{5}$
-
B
\(S < \dfrac{4}{5}\)
-
C
\(S > \dfrac{4}{5}\)
-
D
Cả A, C đều đúng
Đáp án của giáo viên lời giải hay : D
- Tính tổng \(A\) bằng cách áp dụng công thức \(\dfrac{1}{{n.(n + 1)}} = \dfrac{1}{n} - \dfrac{1}{{n + 1}}\)
- So sánh \(A\) với \(\dfrac{3}{5}\) và \(\dfrac{4}{5}\) rồi kết luận.
\(A = \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{{12}} + \ldots + \dfrac{1}{{99.100}}\)
\(A = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{99.100}}\)
\(A = 1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{{99}} - \dfrac{1}{{100}}\)
\(A = 1 - \dfrac{1}{{100}} = \dfrac{{99}}{{100}}\)
So sánh \(A\) với \(\dfrac{3}{5}\) và \(\dfrac{4}{5}\)
Ta có: \(\dfrac{3}{5} = \dfrac{{60}}{{100}};\dfrac{4}{5} = \dfrac{{80}}{{100}}\)
\( \Rightarrow \dfrac{{60}}{{100}} < \dfrac{{80}}{{100}} < \dfrac{{99}}{{100}}\) \( \Rightarrow A > \dfrac{4}{5} > \dfrac{3}{5}\)
Cho \(S = \dfrac{1}{{21}} + \dfrac{1}{{22}} + \dfrac{1}{{23}} + ... + \dfrac{1}{{35}}\). Chọn câu đúng.
-
A
\(S > \dfrac{1}{2}\)
-
B
\(S < 0\)
-
C
\(S = \dfrac{1}{2}\)
-
D
\(S = 2\)
Đáp án của giáo viên lời giải hay : A
Ta chia thành 3 nhóm, mỗi nhóm 5 số hạng. Sau đó đánh giá để kết luận.
\(S = \dfrac{1}{{21}} + \dfrac{1}{{22}} + \dfrac{1}{{23}} + ... + \dfrac{1}{{35}}\)
\(S = \left( {\dfrac{1}{{21}} + ... + \dfrac{1}{{25}}} \right) + \left( {\dfrac{1}{{26}} + ... + \dfrac{1}{{30}}} \right) + \left( {\dfrac{1}{{31}} + ... + \dfrac{1}{{35}}} \right)\)
\(S > \left( {\dfrac{1}{{25}} + ... + \dfrac{1}{{25}}} \right) + \left( {\dfrac{1}{{30}} + ... + \dfrac{1}{{30}}} \right) + \left( {\dfrac{1}{{35}} + ... + \dfrac{1}{{35}}} \right)\)
\(S > \dfrac{1}{5} + \dfrac{1}{6} + \dfrac{1}{7} = \dfrac{{107}}{{210}} > \dfrac{1}{2}\)
Vậy \(S > \dfrac{1}{2}\).
Có bao nhiêu cặp số \(a;b \in Z\) thỏa mãn \(\dfrac{a}{5} + \dfrac{1}{{10}} = \dfrac{{ - 1}}{b}\)?
-
A
\(0\)
-
B
Không tồn tại \((a;b)\)
-
C
\(4\)
-
D
\(10\)
Đáp án của giáo viên lời giải hay : C
Ta quy đồng phân số để tìm a, b.
\(\begin{array}{l}\dfrac{a}{5} + \dfrac{1}{{10}} = \dfrac{{ - 1}}{b}\\\dfrac{{2{\rm{a}}}}{{10}} + \dfrac{1}{{10}} = \dfrac{{ - 1}}{b}\\\dfrac{{2{\rm{a}} + 1}}{{10}} = \dfrac{{ - 1}}{b}\\\left( {2{\rm{a}} + 1} \right).b = - 10\end{array}\)
\(2{\rm{a}} + 1\) là số lẻ; \(2{\rm{a}} + 1\) là ước của \( - 10\)
Vậy có \(4\) cặp số \((a;b)\) thỏa mãn bài toán.
Kết quả của phép tính \(\dfrac{3}{4} - \dfrac{7}{{20}}\) là
-
A
$\dfrac{1}{{10}}$
-
B
$\dfrac{4}{5}$
-
C
\(\dfrac{2}{5}\)
-
D
\(\dfrac{{ - 1}}{{10}}\)
Đáp án của giáo viên lời giải hay : C
Bước 1: Quy đồng mẫu số phân số \(\dfrac{3}{4}\) với mẫu số là \(20\)
Bước 3: Thực hiện trừ hai phân số cùng mẫu ta trừ tử số của phân số thứ nhất cho tử số của phân số thứ 2, giữ nguyên mẫu số.
\(\dfrac{3}{4} - \dfrac{7}{{20}} = \dfrac{{15}}{{20}} - \dfrac{7}{{20}} = \dfrac{8}{{20}} = \dfrac{2}{5}\)
Giá trị của \(x\) thỏa mãn \(\dfrac{{15}}{{20}} - x = \dfrac{7}{{16}}\) là
-
A
$ - \dfrac{5}{{16}}$
-
B
\(\dfrac{5}{{16}}\)
-
C
\(\dfrac{{19}}{{16}}\)
-
D
\( - \dfrac{{19}}{{16}}\)
Đáp án của giáo viên lời giải hay : B
Sử dụng quy tắc chuyển vế, đổi dấu để tìm \(x\)
\(\dfrac{{15}}{{20}} - x = \dfrac{7}{{16}}\)
\(\begin{array}{l} - x = \dfrac{7}{{16}} - \dfrac{{15}}{{20}}\\ - x = - \dfrac{5}{{16}}\\x = \dfrac{5}{{16}}\end{array}\)
Tính \(\dfrac{4}{{15}} - \dfrac{2}{{65}} - \dfrac{4}{{39}}\) ta được
-
A
$\dfrac{1}{{39}}$
-
B
\(\dfrac{2}{{15}}\)
-
C
\(\dfrac{{ - 2}}{{65}}\)
-
D
\(\dfrac{1}{{15}}\)
Đáp án của giáo viên lời giải hay : B
Trong biểu thức chỉ chứa phép cộng và phép trừ nên ta tính lần lượt từ trái qua phải.
+) Quy đồng mẫu các phân số sau đó cộng tử với tử, mẫu giữ nguyên.
\(\begin{array}{l}\dfrac{4}{{15}} - \dfrac{2}{{65}} - \dfrac{4}{{39}}\\ = \dfrac{{52}}{{195}} - \dfrac{6}{{195}} - \dfrac{{20}}{{195}}\\ = \dfrac{{52 - 6 - 20}}{{195}}\\ = \dfrac{{26}}{{195}} = \dfrac{2}{{15}}\end{array}\)
Tính hợp lý \(B = \dfrac{{31}}{{23}} - \left( {\dfrac{7}{{30}} + \dfrac{8}{{23}}} \right)\) ta được
-
A
$\dfrac{{23}}{{30}}$
-
B
\(\dfrac{7}{{30}}\)
-
C
\( - \dfrac{7}{{30}}\)
-
D
\( - \dfrac{{23}}{{30}}\)
Đáp án của giáo viên lời giải hay : A
Phá dấu ngoặc rồi nhóm các số hạng thích hợp để được tổng hoặc hiệu là các số nguyên rồi tính giá tri biểu thức.
Chú ý quy tắc phá ngoặc đằng trước có dấu \('' - ''\) thì phải đổi dấu.
\(\begin{array}{l}B = \dfrac{{31}}{{23}} - \left( {\dfrac{7}{{30}} + \dfrac{8}{{23}}} \right)\\B = \dfrac{{31}}{{23}} - \dfrac{7}{{30}} - \dfrac{8}{{23}}\\B = \left( {\dfrac{{31}}{{23}} - \dfrac{8}{{23}}} \right) - \dfrac{7}{{30}}\\B = 1 - \dfrac{7}{{30}}\\B = \dfrac{{23}}{{30}}\end{array}\)
Cho \(M = \left( {\dfrac{1}{3} + \dfrac{{12}}{{67}} + \dfrac{{13}}{{41}}} \right) - \left( {\dfrac{{79}}{{67}} - \dfrac{{28}}{{41}}} \right)\) và \(N = \dfrac{{38}}{{45}} - \left( {\dfrac{8}{{45}} - \dfrac{{17}}{{51}} - \dfrac{3}{{11}}} \right)\) . Chọn câu đúng.
-
A
$M = N$
-
B
\(N < 1 < M\)
-
C
\(1 < M < N\)
-
D
\(M < 1 < N\)
Đáp án của giáo viên lời giải hay : D
Phá ngoặc rồi nhóm các số hạng có tổng hoặc hiệu là một số nguyên rồi thực hiện tính giá trị các biểu thức \(M,N\) và kết luận.
\(\begin{array}{l}M = \left( {\dfrac{1}{3} + \dfrac{{12}}{{67}} + \dfrac{{13}}{{41}}} \right) - \left( {\dfrac{{79}}{{67}} - \dfrac{{28}}{{41}}} \right)\\M = \dfrac{1}{3} + \dfrac{{12}}{{67}} + \dfrac{{13}}{{41}} - \dfrac{{79}}{{67}} + \dfrac{{28}}{{41}}\\M = \dfrac{1}{3} + \left( {\dfrac{{12}}{{67}} - \dfrac{{79}}{{67}}} \right) + \left( {\dfrac{{13}}{{41}} + \dfrac{{28}}{{41}}} \right)\\M = \dfrac{1}{3} + \left( { - 1} \right) + 1\\M = \dfrac{1}{3}\end{array}\)
\(\begin{array}{l}N = \dfrac{{38}}{{45}} - \left( {\dfrac{8}{{45}} - \dfrac{{17}}{{51}} - \dfrac{3}{{11}}} \right)\\N = \dfrac{{38}}{{45}} - \dfrac{8}{{45}} + \dfrac{{17}}{{51}} + \dfrac{3}{{11}}\\N = \left( {\dfrac{{38}}{{45}} - \dfrac{8}{{45}}} \right) + \dfrac{{17}}{{51}} + \dfrac{3}{{11}}\\N = \dfrac{2}{3} + \dfrac{1}{3} + \dfrac{3}{{11}}\\N = 1 + \dfrac{3}{{11}}\\N = \dfrac{{14}}{{11}}\end{array}\)
Vì \(\dfrac{1}{3} < 1 < \dfrac{{14}}{{11}}\) nên \(M < 1 < N\)
Tìm \(x\) sao cho \(x - \dfrac{{ - 7}}{{12}} = \dfrac{{17}}{{18}} - \dfrac{1}{9}\).
-
A
$ - \dfrac{1}{4}$
-
B
\(\dfrac{{17}}{{12}}\)
-
C
\(\dfrac{1}{4}\)
-
D
\( - \dfrac{{17}}{{12}}\)
Đáp án của giáo viên lời giải hay : C
Sử dụng quy tắc chuyển vế đổi dấu để tìm \(x\)
\(\begin{array}{l}x - \dfrac{{ - 7}}{{12}} = \dfrac{{17}}{{18}} - \dfrac{1}{9}\\x - \dfrac{{ - 7}}{{12}} = \dfrac{5}{6}\\x = \dfrac{5}{6} + \dfrac{{ - 7}}{{12}}\\x = \dfrac{1}{4}\end{array}\)
Giá trị nào của \(x\) dưới đây thỏa mãn \(\dfrac{{29}}{{30}} - \left( {\dfrac{{13}}{{23}} + x} \right) = \dfrac{7}{{69}}\) ?
-
A
$\dfrac{3}{{10}}$
-
B
\(\dfrac{{13}}{{23}}\)
-
C
\(\dfrac{2}{5}\)
-
D
\( - \dfrac{3}{{10}}\)
Đáp án của giáo viên lời giải hay : A
Tính \(\dfrac{{13}}{{23}} + x\) rồi tìm \(x\) theo quy tắc chuyển vế đổi dấu.
\(\begin{array}{l}\dfrac{{29}}{{30}} - \left( {\dfrac{{13}}{{23}} + x} \right) = \dfrac{7}{{69}}\\\dfrac{{13}}{{23}} + x = \dfrac{{29}}{{30}} - \dfrac{7}{{69}}\\\dfrac{{13}}{{23}} + x = \dfrac{{199}}{{230}}\\x = \dfrac{{199}}{{230}} - \dfrac{{13}}{{23}}\\x = \dfrac{3}{{10}}\end{array}\)
Có bao nhiêu số nguyên \(x\) thỏa mãn \(\dfrac{{ - 5}}{{14}} - \dfrac{{37}}{{14}} \le x \le \dfrac{{31}}{{73}} - \dfrac{{31313131}}{{73737373}}\) ?
-
A
$3$
-
B
\(5\)
-
C
\(4\)
-
D
\(1\)
Đáp án của giáo viên lời giải hay : C
Thực hiện phép tính hai vế (rút gọn nếu thể) và tìm \(x\)
\(\dfrac{{ - 5}}{{14}} - \dfrac{{37}}{{14}} \le x \le \dfrac{{31}}{{73}} - \dfrac{{313131}}{{737373}}\)
\(\dfrac{{ - 5}}{{14}} + \dfrac{{ - 37}}{{14}} \le x \le \dfrac{{31}}{{73}} - \dfrac{{313131:10101}}{{737373:10101}}\)
\(\dfrac{{ - 42}}{{14}} \le x \le \dfrac{{31}}{{73}} - \dfrac{{31}}{{73}}\)
\( - 3 \le x \le 0\)
\(x \in \left\{ { - 3; - 2; - 1;0} \right\}\)
Vậy có \(4\) giá trị của \(x\) thỏa mãn bài toán.
Hai vòi nước cùng chảy vào một bể cạn. Vòi thứ nhất chảy riêng trong \(10\) giờ đầy bể, vòi thứ hai chảy riêng trong \(8\) giờ đầy bể. Vòi thứ ba tháo nước ra sau \(5\) giờ thì bể cạn. Nếu bể đang cạn, ta mở cả ba vòi thì sau \(1\) giờ chảy được bao nhiêu phần bể?
-
A
$\dfrac{{17}}{{40}}$
-
B
\(\dfrac{1}{{40}}\)
-
C
\(\dfrac{1}{{13}}\)
-
D
\(1\)
Đáp án của giáo viên lời giải hay : B
- Tìm số phần bể mỗi vòi \(1,2\) chảy được trong \(1\) giờ và số phần bể vòi \(3\) tháo ra.
- Tính số phần bể chảy được trong \(1\) giờ khi mở cả \(3\) vòi.
Trong \(1\) giờ, vòi thứ nhất chảy được là: \(1:10 = \dfrac{1}{{10}}\) (bể)
Trong \(1\) giờ, vòi thứ hai chảy được là: \(1:8 = \dfrac{1}{8}\) (bể)
Trong \(1\) giờ, vòi thứ ba tháo được là: \(1:5 = \dfrac{1}{5}\) (bể)
Sau \(1\) giờ, lượng nước trong bể có là:
\(\dfrac{1}{{10}} + \dfrac{1}{8} - \dfrac{1}{5} = \dfrac{1}{{40}}\) (bể)
Cho \(x\) là số thỏa mãn \(x + \dfrac{4}{{5.9}} + \dfrac{4}{{9.13}} + \dfrac{4}{{13.17}} + ... + \dfrac{4}{{41.45}} = \dfrac{{ - 37}}{{45}}\) . Chọn kết luận đúng:
-
A
$x$ nguyên âm
-
B
\(x = 0\)
-
C
\(x\) nguyên dương
-
D
\(x\) là phân số dương
Đáp án của giáo viên lời giải hay : A
- Sử dụng công thức \(\dfrac{a}{{n\left( {n + a} \right)}} = \dfrac{1}{n} - \dfrac{1}{{n + a}}\) để rút gọn tổng ở vế trái
- Sử dụng quy tắc chuyển vế để tìm \(x\)
\(x + \dfrac{4}{{5.9}} + \dfrac{4}{{9.13}} + \dfrac{4}{{13.17}} + ... + \dfrac{4}{{41.45}} = \dfrac{{ - 37}}{{45}}\)
\(x + \dfrac{1}{5} - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{13}} + ... + \dfrac{1}{{41}} - \dfrac{1}{{45}} = - \dfrac{{37}}{{45}}\)
\(x + \dfrac{1}{5} - \dfrac{1}{{45}} = - \dfrac{{37}}{{45}}\)
\(x + \dfrac{8}{{45}} = - \dfrac{{37}}{{45}}\)
\(x = - \dfrac{{37}}{{45}} - \dfrac{8}{{45}}\)
\(x = - 1\)
Vì \( - 1\) là số nguyên âm nên đáp án A đúng.
Cho \(P = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + ... + \dfrac{1}{{{{2002}^2}}} + \dfrac{1}{{{{2003}^2}}}\) . Chọn câu đúng.
-
A
$P > 1$
-
B
\(P > 2\)
-
C
\(P < 1\)
-
D
\(P < 0\)
Đáp án của giáo viên lời giải hay : C
- Đánh giá từng số hạng của biểu thức: \(\dfrac{1}{{{n^2}}} < \dfrac{1}{{\left( {n - 1} \right).n}}\)
- Sử dụng công thức \(\dfrac{1}{{n\left( {n + 1} \right)}} = \dfrac{1}{n} - \dfrac{1}{{n + 1}}\)
\(P = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + ... + \dfrac{1}{{{{2002}^2}}} + \dfrac{1}{{{{2003}^2}}}\)
\( < \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{2001.2002}} + \dfrac{1}{{2002.2003}}\)
\( = \dfrac{1}{1} - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + ... + \dfrac{1}{{2001}} - \dfrac{1}{{2002}} + \dfrac{1}{{2002}} - \dfrac{1}{{2003}}\)
\( = 1 - \dfrac{1}{{2003}} = \dfrac{{2002}}{{2003}} < 1\)
Vậy \(P < 1\)