Lũy thừa bậc n của một số hữu tỉ x , kí hiệu xn , là tích của n thừa số x ( n là số tự nhiên lớn hợn 1)

xn đọc là x mũ n hoặc x lũy thừa n hoặc lũy thừa bậc n của x.

x: cơ số

n: số mũ

Quy ước: x0  = 1 ( x \( \ne \)0);  x1 = x

Ví dụ: \((\dfrac{1}{2})^3 = \dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{8}\)

Chú ý:

\(\begin{array}{l}{(x.y)^n} = {x^n}.{y^n}\\{(\dfrac{x}{y})^n} = \dfrac{{{x^n}}}{{{y^n}}}\end{array}\)

+ Lũy thừa số mũ chẵn của 1 số hữu tỉ luôn dương

+ Lũy thừa số mũ lẻ của 1 số hữu tỉ âm luôn âm