Lũy thừa bậc n của một số hữu tỉ x , kí hiệu xn , là tích của n thừa số x ( n là số tự nhiên lớn hợn 1)
xn đọc là x mũ n hoặc x lũy thừa n hoặc lũy thừa bậc n của x.
x: cơ số
n: số mũ
Quy ước: x0 = 1 ( x \( \ne \)0); x1 = x
Ví dụ: \((\dfrac{1}{2})^3 = \dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{8}\)
Chú ý:
\(\begin{array}{l}{(x.y)^n} = {x^n}.{y^n}\\{(\dfrac{x}{y})^n} = \dfrac{{{x^n}}}{{{y^n}}}\end{array}\)
+ Lũy thừa số mũ chẵn của 1 số hữu tỉ luôn dương
+ Lũy thừa số mũ lẻ của 1 số hữu tỉ âm luôn âm