Lựa chọn câu để xem lời giải nhanh hơn

Bài 1

Video hướng dẫn giải

Tính theo mẫu:

Mẫu: \( \displaystyle{2 \over 9} \times 5 = {2 \over 9} \times {5 \over 1} = {{2 \times 5} \over {9 \times 1}} = {{10} \over 9}\)

Ta có thể viết gọn như sau: \( \displaystyle{2 \over 9} \times 5 = {{2 \times 5} \over 9} = {{10} \over 9}.\)

a) \( \displaystyle{9 \over {11}} \times 8\)                                b) \( \displaystyle{5 \over 6} \times 7\)

c) \( \displaystyle{4 \over 5} \times 1\)                                  d) \( \displaystyle{5 \over 8} \times 0 \)

Phương pháp giải:

Muốn nhân phân số với số tự nhiên ta có thể lấy tử số nhân với số tự nhiên và giữ nguyên mẫu số.

Lời giải chi tiết:

a) \( \displaystyle{9 \over {11}} \times 8 = {{9 \times 8} \over {11}} = {{72} \over {11}}\)

b) \( \displaystyle{5 \over 6} \times 7 = {{5 \times 7} \over 6} = {{35} \over 6}\)

c) \( \displaystyle{4 \over 5} \times 1 = {{4 \times 1} \over 5} = {4 \over 5}\)

d) \( \displaystyle{5 \over 8} \times 0 = {{5 \times 0} \over 8} = {0 \over 8} = 0\)

Bài 2

Video hướng dẫn giải

Tính (theo mẫu)

Mẫu: \( \displaystyle2 \times {3 \over 7} = {2 \over 1} \times {3 \over 7} = {{2 \times 3} \over {1 \times 7}} = {6 \over 7}\).

Ta có thể viết gọn như sau: \( \displaystyle2 \times {3 \over 7} = {{2 \times 3} \over 7} = {6 \over 7}\).

a) \( \displaystyle4 \times {6 \over 7} \)                                   b) \( \displaystyle3 \times {4 \over {11}}\)

c) \( \displaystyle1 \times {5 \over 4}\)                                   d) \( \displaystyle0 \times {2 \over 5}\)

Phương pháp giải:

Muốn nhân số tự nhiên với phân số ta có thể lấy số tự nhiên nhân với tử số và giữ nguyên mẫu số.

Lời giải chi tiết:

a) \( \displaystyle4 \times {6 \over 7} = {{4 \times 6} \over 7} = {{24} \over 7}\)

b) \( \displaystyle3 \times {4 \over {11}} = {{3 \times 4} \over {11}} = {{12} \over {11}}\)

c) \( \displaystyle1 \times {5 \over 4} = {{1 \times 5} \over 4} = {5 \over 4}\)

d) \( \displaystyle0 \times {2 \over 5} = {{0 \times 2} \over 5} ={0 \over 5}= 0\)

Bài 3

Video hướng dẫn giải

Tính rồi so sánh kết quả: \( \displaystyle{2 \over 5} \times 3 \)  và \( \displaystyle{2 \over 5} + {2 \over 5} + {2 \over 5} .\)

Phương pháp giải:

- Muốn nhân phân số với số tự nhiên ta có thể viết gọn bằng cách lấy tử số nhân với số tự nhiên và giữ nguyên mẫu số.

- Muốn cộng các phân số cùng mẫu số, ta cộng các tử số và giữ nguyên mẫu số.

Lời giải chi tiết:

\( \displaystyle{2 \over 5} \times 3 = {{2 \times 3} \over 5} = {6 \over 5}\)  ;          \( \displaystyle{2 \over 5} + {2 \over 5} + {2 \over 5} = {{2 + 2 + 2} \over 5} = {6 \over 5}\).

Mà \(\dfrac{6}{5}=\dfrac{6}{5}\)

Vậy: \( \displaystyle{2 \over 5} \times 3={2 \over 5} + {2 \over 5} + {2 \over 5}\).

Bài 4

Video hướng dẫn giải

Tính rồi rút gọn:

a) \( \displaystyle{5 \over 3} \times {4 \over 5} \)                    b) \( \displaystyle{2 \over 3} \times {3 \over 7}\)                    c) \( \displaystyle{7 \over {13}} \times {{13} \over 7}\)

Phương pháp giải:

Muốn nhân hai phân số ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.

Lời giải chi tiết:

a) \( \displaystyle{5 \over 3} \times {4 \over 5} = {{5 \times 4} \over {3 \times 5}} = {{20} \over {15}} = {{20:5} \over {15:5}} = {4 \over 3}\)

Hoặc : \( \displaystyle{5 \over 3} \times {4 \over 5} = {{ \not{5} \times 4} \over {3 \times \not{5}}} = {4 \over 3}\)

b) \( \displaystyle{2 \over 3} \times {3 \over 7} = {{2 \times \not{3}} \over {\not{3} \times 7}}  = {2 \over 7}\)

Hoặc : \( \displaystyle{2 \over 3} \times {3 \over 7} = {{2 \times 3} \over {3 \times 7}} = {6 \over {21}} = {{6:3} \over {21:3}} = {2 \over 7}\)

c) \( \displaystyle{7 \over {13}} \times {{13} \over 7} = {{7 \times 13} \over {13 \times 7}} = {{91} \over {91}} = 1\)

Hoặc : \( \displaystyle{7 \over {13}} \times {{13} \over 7} = {{\not{7} \times \not{13}} \over {\not{13} \times \not{7}}}  = 1\) 

Bài 5

Video hướng dẫn giải

Tính chu vi và diện tích hình vuông có cạnh \( \displaystyle{{5} \over 7}m\).

Phương pháp giải:

Áp dụng các công thức:

- Chu vi hình vuông \(=\) cạnh \(\times \; 4\).

- Diện tích hình vuông \(=\) cạnh \(\times\) cạnh.

Lời giải chi tiết:

Chu vi của hình vuông là:

               \( \displaystyle{5 \over 7} \times 4 = {{20} \over 7}\,\,(m)\)

Diện tích của hình vuông là:

               \( \displaystyle{5 \over 7} \times {5 \over 7}  = {{25} \over {49}}\,\,({m^2})\)

                          Đáp số: Chu vi: \( \displaystyle{{20} \over 7}m\); 

                                    Diện tích:  \( \displaystyle{{25} \over {49}}{m^2}\)

soanvan.me