Đề bài
Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng
121; 144; 169; 225; 256; 324; 361; 400.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) Căn bậc hai số học của \(a\) là \( \sqrt{a} \) với \(a>0\).
+) Số dương \(a\) có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là \( \sqrt{a}\) và số âm kí hiệu là \(- \sqrt{a}\).
Lời giải chi tiết
Ta có:
+ \(\sqrt{121}\) có căn bậc hai số học là \(11\) (vì \(11>0\) và \(11^2=121\) )
\(\Rightarrow 121\) có hai căn bậc hai là \(11\) và \(-11\).
+ \(\sqrt{144}\) có căn bậc hai số học là \(12\) (vì \(12>0\) và \(12^2=144\) )
\(\Rightarrow 144\) có hai căn bậc hai là \(12\) và \(-12\).
+ \(\sqrt{169}\) có căn bậc hai số học là \(13\) (vì \(13>0\) và \(13^2=169\) )
\(\Rightarrow 169\) có hai căn bậc hai là \(13\) và \(-13\).
+ \(\sqrt{225}\) có căn bậc hai số học là \(15\) (vì \(15>0\) và \(15^2=225\) )
\(\Rightarrow 225\) có hai căn bậc hai là \(15\) và \(-15\).
+ \(\sqrt{256}\) có căn bậc hai số học là \(16\) (vì \(16>0\) và \(16^2=256\) )
\(\Rightarrow 256\) có hai căn bậc hai là \(16\) và \(-16\).
+ \(\sqrt{324}\) có căn bậc hai số học là \(18\) (vì \(18>0\) và \(18^2=324\) )
\(\Rightarrow 324 \) có hai căn bậc hai là \(18\) và \(-18\).
+ \(\sqrt{361}\) có căn bậc hai số học là \(19\) (vì \(19>0\) và \(19^2=361\) )
\(\Rightarrow 361\) có hai căn bậc hai là \(19\) và \(-19\).
+ \(\sqrt{400}\) có căn bậc hai số học là \(20\) (vì \(20>0\) và \(20^2=400\) )
\(\Rightarrow 400 \) có hai căn bậc hai là \(20\) và \(-20\).
soanvan.me