Đề bài

Bài 1. (7 điểm) Hãy khoanh tròn vào chữ cái trước câu trả lời đúng

Câu 1. Biểu thức \(\displaystyle \sqrt {1 - 2x} \) xác định khi 

A.\(\displaystyle x \ge \dfrac{1}{2}\)                         B. \(\displaystyle x \le \dfrac{1}{2}\)

C. \(\displaystyle x > \dfrac{1}{2}\)                        D. \(\displaystyle x < \dfrac{1}{2}\)

Câu 2. Điều kiện xác định của biểu thức \(\displaystyle \dfrac{{\sqrt x  + 1}}{{x - \sqrt x }}\) là

A.\(\displaystyle x \ne 0\)                        B. \(\displaystyle x > 0,x \ne 1\)

C. \(\displaystyle x \ge 0\)                       D. \(\displaystyle x \ge 0,x \ne 1\)

Câu 3. Biểu thức \(\displaystyle \sqrt {\dfrac{1}{{x - 1}}}  + \sqrt {2 - x} \) có nghĩa khi

A.\(\displaystyle x > 2\)                      B. \(\displaystyle x < 1\)

C. \(\displaystyle 1 < x \le 2\)             D. \(\displaystyle x \le 2,x \ne 1\)

Câu 4. Căn bậc hai số học của 64 là

A. 8 và -8                      B. -8

C. 8                              D. 32.

Câu 5. Kết quả phép tính\(\displaystyle \sqrt {{{(\sqrt 3  - \sqrt 2 )}^2}} \)  là

A.\(\displaystyle \sqrt 3  - \sqrt 2 \)                   B. \(\displaystyle \sqrt 2  - \sqrt 3 \)

C. \(\displaystyle \pm (\sqrt 3  - \sqrt 2 )\)           D. 1

Câu 6. Kết quả của phép tính \(\displaystyle (2\sqrt 3  + \sqrt 2 )(2\sqrt 3  - \sqrt 2 )\) là

A.\(\displaystyle 4\sqrt 3 \)                        B. \(\displaystyle 2\sqrt 2 \)

C. 10                           D. 14

Câu 7. Giá trị của biểu thức  \(\displaystyle {1 \over {2 + \sqrt 3 }} - {1 \over {2 - \sqrt 3 }}\) bằng

A.4                             B. 0

C. \(\displaystyle - 2\sqrt 3 \)                   D. \(\displaystyle 2\sqrt 3 \)

Câu 8. Giá trị của biểu thức \(\displaystyle \sqrt 3  - \sqrt {48}  + \sqrt {12} \) là

A.\(\displaystyle - \sqrt 3 \)                    B. \(\displaystyle \sqrt 3 \)

C. \(\displaystyle - 2\sqrt 3 \)                 D. \(\displaystyle 2\sqrt 3 \)

Câu 9. Giá trị của biểu thức \(\displaystyle \sqrt {{{(1 - \sqrt 2 )}^2}}  - \sqrt {{{(1 + \sqrt 2 )}^2}} \) là

A.0                                    B. -2

C.\(\displaystyle - \sqrt 2 \)                             D. \(\displaystyle - 2\sqrt 2 \)

Câu 10. Giá trị của biểu thức \(\displaystyle \)\(\displaystyle \left( {\sqrt {27}  - 3\sqrt {\dfrac{4}{3}}  + \sqrt {12} } \right):\sqrt 3 \) bằng

A.\(\displaystyle \sqrt 3 \)                         B. \(\displaystyle 2\sqrt 3 \)

C. \(\displaystyle - 2\sqrt 3 \)                  D.3

Câu 11. Giá trị của biểu thức \(\displaystyle \)\(\displaystyle \dfrac{{\sqrt 5 }}{{\sqrt {80} }}.\dfrac{{\sqrt {90} }}{{\sqrt {10} }}\) bằng

A.16                        B.0,75

C. 4                         D. 0,25.

Câu 12. Kết quả rút gọn của biểu thức \(\displaystyle \dfrac{{\sqrt {{x^2} - 6x + 9} }}{{x - 3}}\) với \(\displaystyle x > 3\) là

A.-1                             B. 1

C. \(\displaystyle \pm 1\)                          D. kết quả khác.

Câu 13. Kết quả rút gọn của biểu thức \(\displaystyle {x^2}{y^2}.\sqrt {\dfrac{9}{{{x^2}{y^4}}}} \) với x

A. \(\displaystyle 3xy\)                     B.\(\displaystyle {x^2}y\)

C. \(\displaystyle -3x\)                     D. \(\displaystyle -3xy.\)

Câu 14. Tất cả các giá trị của x thỏa mãn \(\displaystyle \sqrt {4{x^2} + 4x + 1}  = 7\) là

A. \(\displaystyle x=3\)                  B. \(\displaystyle x = \dfrac{{ - 7}}{2}\)

C. \(\displaystyle x=-3\)               D. \(\displaystyle x=-4;x=3.\)

Bài 2. (3 điểm) Điền x vào cột đúng hoặc sai cho thích hợp

Khẳng định

Đúng

Sai

Số 0 là căn bậc hai số học của 0

 

 

Giá trị nhỏ nhất của biểu thức \(\displaystyle \sqrt {{x^2} + 4x + 5} \) là 5

 

 

Với a>b>0 thì \(\displaystyle \sqrt a  - \sqrt b  < \sqrt {a - b} \)

 

 

Với a>0 và b>0 thì \(\displaystyle \sqrt a  + \sqrt b  > \sqrt {a + b} \)

 

 

Với mọi số a, ta có \(\displaystyle \sqrt {{a^2}}  = a\)

 

 

\(\displaystyle \sqrt {\dfrac{a}{b}}  = \dfrac{{\sqrt a }}{{\sqrt b }}\) với mọi a và b

 

 

 

Lời giải chi tiết

Bài 1. (7 điểm) Mỗi câu trả lời đúng được 0,5 điểm

Câu 1 2 3 4 5
Đáp án B B C C A
Câu 6 7 8 9 10
Đáp án C C A B D
Câu 11 12 13 14  
Đáp án B B C D  

 

Câu 1: Biểu thức \(\sqrt {1 - 2x} \) xác định khi:

\(1 - 2x \ge 0 \Leftrightarrow  - 2x \ge  - 1 \Leftrightarrow x \le \frac{1}{2}\)

Câu 2: ĐKXĐ:

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{x - \sqrt x  \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{\sqrt x \left( {\sqrt x  - 1} \right) \ne 0}\end{array}} \right.} \right.\\\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{\left[ {\begin{array}{*{20}{c}}{x \ne 0}\\{x \ne 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x > 0;x \ne 1\end{array}\)

Câu 3: Biểu thức có nghĩa khi:

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{\frac{1}{{x - 1}} \ge 0}\\{2 - x \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x - 1 > 0}\\{x \le 2}\end{array}} \right.} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 1}\\{x \le 2}\end{array}} \right. \Leftrightarrow 1 < x \le 2\end{array}\)

Câu 4: Căn bậc hai số học của 64 là \(\sqrt {64}  = 8\)

Câu 5: Ta có:

\(\sqrt {{{\left( {\sqrt 3  - \sqrt 2 } \right)}^2}}  = \left| {\sqrt 3  - \sqrt 2 } \right| = \sqrt 3  - \sqrt 2 \)

Câu 6:Ta có:

\(\begin{array}{l}\left( {2\sqrt 3  + \sqrt 2 } \right)\left( {2\sqrt 3  - \sqrt 2 } \right)\\ = {\left( {2\sqrt 3 } \right)^2} - {\left( {\sqrt 2 } \right)^2}\\ = 12 - 2 = 10\end{array}\)

Câu 7: Ta có:

\(\begin{array}{l}\frac{1}{{2 + \sqrt 3 }} - \frac{1}{{2 - \sqrt 3 }}\\ = \frac{{2 - \sqrt 3  - 2 - \sqrt 3 }}{{{2^2} - {{\left( {\sqrt 3 } \right)}^2}}}\\ =  - 2\sqrt 3 \end{array}\)

Câu 8: Ta có:

\(\begin{array}{l}\sqrt 3  - \sqrt {48}  + \sqrt {12}  = \sqrt 3  - \sqrt {3.16}  + \sqrt {3.4} \\ = \sqrt 3  - 4\sqrt 3  + 2\sqrt 3  =  - \sqrt 3 \end{array}\)

Câu 9: Ta có:

\(\begin{array}{l}\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}}  - \sqrt {{{\left( {1 + \sqrt 2 } \right)}^2}} \\ = \left| {1 - \sqrt 2 } \right| - \left| {1 + \sqrt 2 } \right|\\ = \sqrt 2  - 1 - 1 - \sqrt 2 \\ =  - 2\\\end{array}\)

Câu 10: Ta có:

\(\begin{array}{l}\left( {\sqrt {27}  - 3\sqrt {\frac{4}{3}}  + \sqrt {12} } \right):\sqrt 3 \\ = \left( {\sqrt {3.3^2}  - 3\frac{{\sqrt 4 }}{{\sqrt 3 }} + \sqrt {3.2^2} } \right).\frac{1}{{\sqrt 3 }}\\ = \left( {3\sqrt 3  - 2\sqrt 3 + 2\sqrt 3 } \right).\frac{1}{{\sqrt 3 }}\\ =3 \sqrt{3}.\frac{1}{\sqrt{3}}= 3\end{array}\)

Câu 11: Ta có:

\(\begin{array}{l}\frac{{\sqrt 5 }}{{\sqrt {80} }}.\frac{{\sqrt {90} }}{{\sqrt {10} }}\\ = \frac{{\sqrt 5 }}{{\sqrt {5.16} }}.\frac{{\sqrt {9.10} }}{{\sqrt {10} }}\\ = \frac{{\sqrt 5 }}{{4\sqrt 5 }}.\frac{{3\sqrt {10} }}{{\sqrt {10} }}\\ = \frac{3}{4} = 0,75\end{array}\)

Câu 12: Ta có:

\(\begin{array}{l}\frac{{\sqrt {{x^2} - 6x + 9} }}{{x - 3}} = \frac{{\sqrt {{{\left( {x - 3} \right)}^2}} }}{{x - 3}}\\ = \frac{{\left| {x - 3} \right|}}{{x - 3}} = \frac{{x - 3}}{{x - 3}} = 1\end{array}\)

Câu 13:Ta có:

\(\begin{array}{l}{x^2}{y^2}.\sqrt {\frac{9}{{{x^2}{y^4}}}}  = {x^2}{y^2}.\sqrt {{{\left( {\frac{3}{{x{y^2}}}} \right)}^2}} \\ = {x^2}{y^2}.\left| {\frac{3}{{x{y^2}}}} \right| = {x^2}{y^2}.\frac{3}{{ - x{y^2}}}\\ =  - 3x\end{array}\)

Câu 14:Ta có:

\(\begin{array}{l}\sqrt {4{x^2} + 4x + 1}  = 7\\ \Leftrightarrow 4{x^2} + 4x + 1 = 49\\ \Leftrightarrow 4{x^2} + 4x - 48 = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 3}\\{x =  - 4}\end{array}} \right.\end{array}\).

Vậy \(x = 3;x =  - 4\)

 

Bài 2. (3 điểm ) Mỗi câu trả lời đúng được 0,5 điểm

Khẳng định

Đúng

Sai

Số 0 là căn bậc hai số học của 0

×

 

Giá trị nhỏ nhất của biểu thức \(\sqrt {{x^2} + 4x + 5} \) là 5

 

×

Với a>b>0 thì \(\sqrt a  - \sqrt b  < \sqrt {a - b} \)

×

 

Với a>0 và b>0 thì \(\sqrt a  + \sqrt b  > \sqrt {a + b} \)

×

 

Với mọi số a, ta có \(\sqrt {{a^2}}  = a\)

 

×

\(\sqrt {\dfrac{a}{b}}  = \dfrac{{\sqrt a }}{{\sqrt b }}\) với mọi a và b

 

×

soanvan.me