Câu hỏi 1 :

Kết quả của phép tính \(\left( { - 125} \right).8\) là:

  • A

    $1000$

  • B

    $ - 1000$

  • C

    $ - 100$

  • D

    $ - 10000$

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Muốn nhân hai số nguyên khác dấu, ta nhân hai giá trị tuyệt đối của chúng rồi đặt dấu $\left(  -  \right)$ trước kết quả nhận được.

Lời giải chi tiết :

\(\left( { - 125} \right).8 =  - \left( {125.8} \right) =  - 1000\)

Câu hỏi 2 :

Khi \(x =  - 12\) , giá trị của biểu thức \(\left( {x - 8} \right).\left( {x + 7} \right)\) là số nào trong bốn số sau:

  • A

    \( - 100\)

  • B

    \(100\)  

  • C

    \( - 96\)

  • D

    \( - 196\)

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Thay giá trị của $x$ vào biểu thức rồi áp dụng quy tắc nhân hai số nguyên ta tính được giá trị của biểu thức.

Lời giải chi tiết :

Thay \(x =  - 12\) vào biểu thức \(\left( {x - 8} \right).\left( {x + 7} \right)\), ta được:

\(\begin{array}{l}\left( { - 12 - 8} \right).\left( { - 12 + 7} \right)\\ = \left( { - 20} \right).\left( { - 5} \right)\\ = 20.5\\ = 100\end{array}\)

Câu hỏi 3 :

Giá trị biểu thức \(M = \left( { - 192873} \right).\left( { - 2345} \right).{\left( { - 4} \right)^5}.0\) là

  • A

    \( - 192873\)

  • B

    \(1\)

  • C

    \(0\)

  • D

    \(\left( { - 192873} \right).\left( { - 2345} \right).{\left( { - 4} \right)^5}\)

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Áp dụng tính chất nhân một số với \(0\): Số nào nhân với \(0\) cũng bằng \(0\)

Lời giải chi tiết :

Vì trong tích có một thừa số bằng \(0\) nên \(M = 0\)

Câu hỏi 4 :

Tính giá trị biểu thức \(P = {\left( { - 13} \right)^2}.\left( { - 9} \right)\) ta có

  • A

    \(117\)

  • B

    \( - 117\) 

  • C

    \(1521\)

  • D

    \( - 1521\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Thứ tự thực hiện phép tính: Bình phương trước rồi thực hiện phép nhân hai số nguyên.

Lời giải chi tiết :

\(P = {\left( { - 13} \right)^2}.\left( { - 9} \right) = 169.\left( { - 9} \right) =  - 1521\)

Câu hỏi 5 :

Tính giá trị biểu thức \(P = \left( {x - 3} \right).3 - 20.x\) khi \(x = 5.\)

  • A

    \( - 94\)                            

  • B

    \(100\)

  • C

    \( - 96\)       

  • D

    \( - 104\)

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Bước 1: Thay giá trị của $x$ vào biểu thức
Bước 2: Tính giá trị của biểu thức

Lời giải chi tiết :

Thay \(x = 5\) vào \(P\) ta được:

\(\begin{array}{l}P = \left( {5 - 3} \right).3 - 20.5\\ = 2.3 - 100 = 6 - 100 =  - 94\end{array}\)

Câu hỏi 6 :

Có bao nhiêu giá trị \(x\) nguyên dương thỏa mãn $\left( {x - 3} \right).\left( {x + 2} \right) = 0$ là:

  • A

    \(3\)

  • B

    \(2\)

  • C

    \(0\)

  • D

    \(1\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Sử dụng kiến thức: $A.B = 0$ thì $A = 0$ hoặc $B = 0$

Lời giải chi tiết :

$\left( {x - 3} \right).\left( {x + 2} \right) = 0$

\(\begin{array}{l}TH1:x - 3 = 0\\x = 0 + 3\\x = 3\left( {TM} \right)\end{array}\)

\(\begin{array}{l}TH2:x + 2 = 0\\x = 0 - 2\\x =  - 2\left( L \right)\end{array}\)

Vậy có duy nhất \(1\) giá trị nguyên dương của \(x\) thỏa mãn là \(x = 3\)

Câu hỏi 7 :

Cho \(B = \left( { - 8} \right).25.{\left( { - 3} \right)^2}\) và \(C = \left( { - 30} \right).{\left( { - 2} \right)^3}.\left( {{5^3}} \right)\) . Chọn câu đúng.

  • A

    \(3.B = 50.C\)

  • B

    \(B.50 = C.\left( { - 3} \right)\)

  • C

    \(B.60 =  - C\)

  • D

    \(C =  - B\)

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Thực hiện lũy thừa trước rồi nhân các số nguyên với nhau.

+ Muốn nhân hai số nguyên âm, ta nhân hai giá trị tuyệt đối của chúng
+ Muốn nhân hai số nguyên khác dấu, ta nhân hai giá trị tuyệt đối của chúng rồi đặt dấu (-) trước kết quả nhận được

Lời giải chi tiết :

\(B = \left( { - 8} \right).25.{\left( { - 3} \right)^2} =  - 200.9 =  - 1800\)

\(\begin{array}{l}C = \left( { - 30} \right).{\left( { - 2} \right)^3}.\left( {{5^3}} \right)\\ = \left( { - 30} \right).\left( { - 8} \right).125\\ = \left( { - 30} \right).\left( { - 1000} \right)\\ = 30000\end{array}\)

Khi đó \(B.50 =  - 1800.50 =  - 90000;\) \(C.\left( { - 3} \right) = 30000.\left( { - 3} \right) =  - 90000\)

Vậy \(B.50 = C.\left( { - 3} \right)\)

Câu hỏi 8 :

Tìm \(x\) biết $2\left( {x - 5} \right) - 3\left( {x - 7} \right) =  - 2.$

  • A

    \(x = 13\)

  • B

    \(x = 5\)  

  • C

    \(x = 7\) 

  • D

    \(x = 6\)

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Bước 1: Áp dụng tính chất của phép nhân để phá ngoặc
Bước 2: Thu gọn vế trái
Bước 3: Tìm $x$

Lời giải chi tiết :

$\begin{array}{l}2\left( {x - 5} \right) - 3\left( {x - 7} \right) =  - 2\\2x - 10 - 3.x + 3.7 =  - 2\\2x - 10 - 3x + 21 =  - 2\\\left( {2x - 3x} \right) + \left( {21 - 10} \right) =  - 2\\\left( {2 - 3} \right)x + 11 =  - 2\\ - x + 11 =  - 2\\ - x =  - 2 - 11\\ - x =  - 13\\x = 13\end{array}$

Câu hỏi 9 :

Có bao nhiêu giá trị \(x\) thỏa mãn $\left( {x - 6} \right)\left( {{x^2} + 2} \right) = 0?$

  • A

    \(0\)

  • B

    \(2\)    

  • C

    \(3\) 

  • D

    \(1\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Sử dụng kiến thức: $A.B = 0,B \ne 0 \Rightarrow A = 0$
Lưu ý: ${a^2} \ge 0$ với mọi $a$

Lời giải chi tiết :

$\left( {x - 6} \right)\left( {{x^2} + 2} \right) = 0$

Vì \({x^2} \ge 0\) với mọi \(x\) nên \({x^2} + 2 \ge 0 + 2 = 2\) hay \({x^2} + 2 > 0\) với mọi \(x\)

Suy ra

\(\begin{array}{l}x - 6 = 0\\x = 0 + 6\\x = 6\end{array}\)

Vậy chỉ có \(1\) giá trị của \(x\) thỏa mãn là \(x = 6\)

Câu hỏi 10 :

Cho \(A = \left( {135 - 35} \right).\left( { - 47} \right) + 53.\left( { - 48 - 52} \right)\) và \(B = 25.\left( {75 - 49} \right) + 75.\left| {25 - 49} \right|.\)

Chọn câu đúng.

  • A

    \(A\) và \(B\) đối nhau

  • B

    \(A\) và \(B\) bằng nhau

  • C

    \(A\) và \(B\) cùng dấu                 

  • D

    \(A\) và \(B\) trái dấu

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

+) Thực hiện phép tính trong ngoặc trước, đổi dấu hai thừa số, đặt thừa số chung rồi áp dụng quy tắc nhân hai số nguyên khác dấu.

+) Lập luận để phá dấu giá trị tuyệt đối, áp dụng tính chất phân phối để nhân phá ngoặc, nhóm các tích và đặt thừa số chung, sử dụng quy tắc nhân hai số nguyên cùng dấu.

Lời giải chi tiết :

\(\begin{array}{l}A = \left( {135 - 35} \right).\left( { - 47} \right) + 53.\left( { - 48 - 52} \right)\\ = 100.\left( { - 47} \right) + 53.\left( { - 100} \right)\\ = \left( { - 100} \right).47 + 53.\left( { - 100} \right)\\ = \left( { - 100} \right).\left( {47 + 53} \right)\\ = \left( { - 100} \right).100\\ =  - 10000\end{array}\)

Vì \(25 - 49 < 0\) nên \(\left| {25 - 49} \right| =  - \left( {25 - 49} \right) = 49 - 25\)

\(\begin{array}{l}B = 25.\left( {75 - 49} \right) + 75.\left| {25 - 49} \right|\\ = 25.\left( {75 - 49} \right) + 75.\left( {49 - 25} \right)\\ = 25.75 - 25.49 + 75.49 - 75.25\\ = \left( {25.75 - 75.25} \right) + \left( { - 25.49 + 75.49} \right)\\ = 0 + 49.\left( { - 25 + 75} \right)\\ = 49.50\\ = 2450\end{array}\)

Do đó \(A\) và \(B\) là hai số nguyên trái dấu.

Câu hỏi 11 :

Số cặp số nguyên \(\left( {x;y} \right)\) thỏa mãn \(x.y =  - 28\) là:

  • A

    \(3\)  

  • B

    \(6\)   

  • C

    \(8\)  

  • D

    \(12\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

- Tìm bộ các số nguyên có tích bằng \( - 28\)

- Tìm \(x,y\) và kết luận.

Lời giải chi tiết :

Vì \( - 28 =  - 1.28 = 1.\left( { - 28} \right)\)\( =  - 2.14 = 2.\left( { - 14} \right)\)\( =  - 4.7 = 4.\left( { - 7} \right)\)

Nên ta có các bộ \(\left( {x;y} \right)\) thỏa mãn bài toán là:

\(\left( { - 1;28} \right),\left( {28; - 1} \right),\)\(\left( {1; - 28} \right),\left( { - 28;1} \right),\)\(\left( { - 2;14} \right),\left( {14; - 2} \right),\)\(\left( {2; - 14} \right),\left( { - 14;2} \right),\)\(\left( { - 4;7} \right),\left( {7; - 4} \right),\)\(\left( {4; - 7} \right),\left( { - 7;4} \right).\)

Có tất cả \(12\) bộ số \(\left( {x;y} \right)\) thỏa mãn bài toán.

Câu hỏi 12 :

Giá trị nhỏ nhất của biểu thức $3{(x + 1)^2} + 7$ là

  • A

    \(0\) 

  • B

    \(7\)

  • C

    \(10\)

  • D

    \( - 7\)

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Sử dụng đánh giá:

+ Nếu \(c > 0\) thì \(c.{a^2} + b \ge b\)

+ Nếu \(c < 0\) thì \(c.{a^2} + b \le b\)

Lời giải chi tiết :

Ta có:

\({\left( {x + 1} \right)^2} \ge 0\) với mọi \(x\)

\( \Rightarrow 3.{\left( {x + 1} \right)^2} \ge 0\) với mọi \(x\)

\( \Rightarrow 3{\left( {x + 1} \right)^2} + 7 \ge 0 + 7\)

\( \Rightarrow 3{\left( {x + 1} \right)^2} + 7 \ge 7\)

Vậy GTNN của biểu thức là \(7\) đạt được khi $x=-1.$

Câu hỏi 13 :

Tính giá trị của biểu thức: $A = ax - ay + bx - by$ biết $a + b =  - 5;x - y =  - 2$

  • A

    \(7\)

  • B

    \(10\)

  • C

    \( - 7\)

  • D

    \( - 3\)

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Bước 1: Thu gọn biểu thức $A$ về dạng xuất hiện $a + b,x - y$
Bước 2: Thay $a + b,x - y$ vào biểu thức vừa thu gọn để tính.

Lời giải chi tiết :

$A = ax - ay + bx - by$ $ = (ax - ay) + (bx - by)$ $ = a.(x - y) + b.(x - y)$ $ = (a + b).(x - y)$

Thay $a + b =  - 5;x - y =  - 2$ ta được:

\(A = \left( { - 5} \right).\left( { - 2} \right) = 10\)

Câu hỏi 14 :

Tìm \(x \in Z\) biết \(\left( {x + 1} \right) + \left( {x + 2} \right) + ... + \left( {x + 99} \right) + \left( {x + 100} \right) = 0\).

  • A

    \(90,6\)

  • B

    Không có $x$ thỏa mãn.    

  • C

    \(50,5\)           

  • D

    \( - 50,5\)

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

- Sử dụng quy tắc bỏ ngoặc.

- Nhóm \(x\) lại với nhau, nhóm số tự nhiên vào một nhóm.

- Áp dụng công thức tổng các số cách đều nhau:

Số số hạng = (Số cuối - số đầu):khoảng cách +1

Tổng = (Số cuối + số dầu).số số hạng :2

Lời giải chi tiết :

\(\begin{array}{l}\left( {x + 1} \right) + \left( {x + 2} \right) + ... + \left( {x + 99} \right) + \left( {x + 100} \right) = 0\\(x + x + .... + x) + (1 + 2 + ... + 100) = 0\\100{\rm{x}} + (100 + 1).100:2 = 0\\100{\rm{x}} + 5050 = 0\\100{\rm{x}} =  - 5050\\x =  - 50,5\end{array}\)

Mà \(x\in Z\) nên không có $x$ thỏa mãn.

Câu hỏi 15 :

Có bao nhiêu cặp số \(x;y \in Z\) thỏa mãn \(xy + 3x - 7y = 23?\)

  • A

    \(1\)

  • B

    \(2\)

  • C

    \(3\)

  • D

    \(4\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Chuyển vế, nhóm các hạng tử để đưa về dạng \(X.Y=a\); \(a \) là số nguyên.

Lời giải chi tiết :

\(\begin{array}{l}xy + 3{\rm{x}} - 7y - 23 = 0\\xy + 3x - 7y - 21 - 2 = 0\\x(y + 3) - 7(y + 3) = 2\\(x - 7)(y + 3) = 2\end{array}\)

Ta có các trường hợp:


Vậy các cặp số \((x,y)\) là \(\left\{ {\left( {8; - 1} \right);\left( {9; - 2} \right);\left( {6; - 5} \right);\left( { - 5; - 4} \right)} \right\}\)
Vậy có 4 cặp số thỏa mãn bài toán.

Câu hỏi 16 :

Giá trị biểu thức: \(15x - 23\) với \(x = - 1\) là:

  • A
    \( - 8\)
  • B
    \( 8\)
  • C
    \( 38\)
  • D
    \( -38\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Bước 1: Thay \(x=-1\) vào biểu thức

Bước 2: Thực hiện phép nhân hai số nguyên trái dấu

Bước 3: Thực hiện phép trừ.

Lời giải chi tiết :

Thay \(x = - 1\) vào biểu thức ta được:

\(15.\left( { - 1} \right) - 23 = \left( { - 15} \right) - 23 = \left( { - 15} \right) + \left( { - 23} \right) = - 38\)

Câu hỏi 17 :

Công ty Ánh Dương có lợi nhuận ở mỗi tháng trong Quý I là – 30 triệu đồng. Trong Quý II, lợi nhuận mỗi tháng của công ty là 70 triệu đồng. Sau 6 tháng đầu năm, lợi nhuận của công ty Ánh Dương là?

  • A
    \(120\) triệu
  • B
    \( - 120\) triệu
  • C
    \(300\) triệu
  • D
    \(40\) triệu

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Một quý gồm 3 tháng.

Tính lợi nhuận quý II: Lấy lợi nhuận mỗi tháng quý này nhân với 3.

Lợi nhuận 6 tháng đầu năm bằng lợi nhuận quý I cộng lợi nhuận quý II.

Lời giải chi tiết :

* Lợi nhuận Quý I là \((- 30) . 3 = - 90\) triệu đồng.

* Lợi nhuận Quý II là \(70 . 3 = 210\) triệu đồng.

Sau 6 tháng đầu năm, lợi nhuận của công ty Ánh Dương là: \((- 90) + 210 = 120\) triệu đồng.

Câu hỏi 18 :

Giá trị nào dưới đây của \(x\) thỏa mãn \( - 6\left( {x + 7} \right) = 96?\)

  • A

    \(x = 95\)                               

  • B

    \(x =  - 16\)                                  

  • C

    \(x =  - 23\)  

  • D

    \(x = 96\)

Đáp án của giáo viên lời giải hay : C

Lời giải chi tiết :

\(\begin{array}{l} - 6\left( {x + 7} \right) = 96\\x + 7 = 96:\left( { - 6} \right)\\x + 7 =  - 16\\x =  - 16 - 7\\x =  - 23\end{array}\)

Câu hỏi 19 :

Có bao nhiêu cặp số \(\left( {x;y} \right)\) nguyên biết: \(\left( {x - 1} \right)\left( {y + 1} \right) = 3?\)

  • A

    \(1\)

  • B

    \(3\)

  • C

    \(2\)

  • D

    \(4\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

- Tìm các cặp số có tích bằng \(3\)

- Lập bảng tìm các giá trị của \(x,y\) và kết luận.

Lời giải chi tiết :

Ta có: \(3 = 1.3 = 3.1 = \left( { - 1} \right).\left( { - 3} \right) = \left( { - 3} \right).\left( { - 1} \right)\)

Ta có bảng:

Vậy có \(4\) cặp số \(\left( {x;y} \right)\) thỏa mãn là: \(\left( {2;2} \right),\left( {4;0} \right),\left( {0; - 4} \right),\left( { - 2; - 2} \right)\)

Câu hỏi 20 :

Bạn Hồng đang ngồi trên máy bay, bạn ấy thấy màn hình thông báo nhiệt độ bên ngoài máy bay là \( - 28^\circ C\). Máy bay đang hạ cánh, nhiệt độ bên ngoài trung bình mỗi phút tăng lên \(4^\circ C\). Hỏi sau 10 phút nữa nhiệt độ bên ngoài máy bay là bao nhiêu độ C?

  • A
    \({24^o}C\)
  • B
    \( - {12^o}C\)
  • C
    \( - {24^o}C\)
  • D
    \({12^o}C\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Nhiệt độ bên ngoài máy bay sau 10 phút bằng nhiệt độ ban đầu cộng với nhiệt độ tăng lên trong 10 phút đó.

Lời giải chi tiết :

Nhiệt độ bên ngoài sau 10 phút là \( - 28 + 10.4 = - 28 + 40 = 12^\circ C\)