Đề bài

Cho hình thang cân ABCD (AB//CD).

a) Chứng minh rằng \(\widehat {ACD} = \widehat {BDC}\) .

b) Gọi E là giao điểm của AC và BD. Chứng minh rằng EA = EB.

Lời giải chi tiết

\Xét \(\Delta ACD\) và \(\Delta BCD\)  ta có: DC là cạnh chung;

\(AD = BC\) (ABCD là hình thang cân)

\(\widehat {ADC} = \widehat {BCD}\) (ABCD là hình thang cân)

Do đó : \(\Delta ACD = \Delta BDC\,\,\left( {c.g.c} \right)\)

\( \Rightarrow \widehat {ACD} = \widehat {BDC}\) (hai góc tương ứng)

b) Ta có \(\widehat {ACD} = \widehat {BDC};\,\,\widehat {ACD} = \widehat {BAE}\) (hai góc so le trong và AB // CD)

Và \(\widehat {BDC} = \widehat {ABE}\) (hai góc so le trong và AB // CD)

Suy ra \(\widehat {BAE} = \widehat {ABE} \Rightarrow \Delta ABE\) cân tại E \( \Rightarrow EA = EB\)

soanvan.me