Đề bài

Tính diện tích hình thang cân có hai đáy bằng 23 cm, 13 cm và cạnh bên bảng 13 cm.

Lời giải chi tiết

 

Vẽ \(AH \bot CD\) tại H và \(BK \bot CD\) tại K

\( \Rightarrow AK//BK\)

Mà \(AB//CD\,\,\left( {gt} \right)\)

Do đó tứ giác ABKH là hình bình hành.

\( \Rightarrow HK = AB = 13\,\,\left( {cm} \right)\)

Xét tam giác \(HAD\,\,\left( {\widehat {AHD} = {{90}^0}} \right)\) và tam giác \(KBC\,\,\left( {\widehat {BKC} = {{90}^0}} \right)\) có:

\(AD = BC,\,\,\widehat D = \widehat C\) (tứ giác ABCD là hình thang cân)

Do đó \(\Delta HAD = \Delta KBC\) (cạnh huyền – góc nhọn)

\( \Rightarrow DH = CK\).

Do đó \(DH = CK = {{CD - HK} \over 2} = {{23 - 13} \over 2} = 5\,\,\left( {cm} \right)\)

\(\Delta HAD\) vuông tại H \( \Rightarrow A{H^2} + D{H^2} = A{D^2}\) (Định lí Pytago)

Nên \(AH = \sqrt {A{D^2} - D{H^2}}  = \sqrt {{{13}^2} - {5^2}}  = 12\,\,\left( {cm} \right)\)

Vậy \({S_{ABCD}} = {1 \over 2}\left( {AB + CD} \right).AH = {1 \over 2}\left( {13 + 23} \right).12 = 216\,\,\left( {c{m^2}} \right)\)

soanvan.me