Đề bài

Cho tam giác \(ABC\) vuông tại \(A\), \(AB = 6cm,\widehat B = \alpha \). 

Biết \(tg\alpha  = \dfrac{5}{{12}}.\) Hãy tính:

a) Cạnh \(AC\);

b) Cạnh \(BC\).

Phương pháp giải - Xem chi tiết

Các tỉ số lượng giác của góc nhọn (hình) được định nghĩa như sau:

 

 \(\sin \alpha  = \dfrac{{AB}}{{BC}};\cos \alpha  = \dfrac{{AC}}{{BC}};\)\(\tan \alpha  = \dfrac{{AB}}{{AC}};\cot \alpha  = \dfrac{{AC}}{{AB}}.\) 

Định lí Pytago vào tam giác ABC vuông tại A: \(A{B^2} + A{C^2} = B{C^2}.\) 

Lời giải chi tiết

Giả sử tam giác \(ABC\) có \(\widehat A = 90^\circ ,\widehat B = \alpha .\) 

a) Ta có: \(\tan\alpha  = \tan\widehat B = \dfrac{{AC}}{{AB}}\)

Suy ra: \(AC = AB.\tan\widehat B = AB.\tan\alpha \)\( = 6.\dfrac{5}{{12}} = 2,5\left( {cm} \right)\)

b) Áp dụng định lí Pytago vào tam giác vuông \(ABC\), ta có:

\(B{C^2} = A{B^2} + A{C^2}\)\( = {6^2} + {(2,5)^2} = 42,25\) 

Suy ra: \(BC = \sqrt {42,25}  = 6,5\left( {cm} \right).\)