Hãy tìm \(\sin \alpha ,\cos \alpha \) (làm tròn đến chữ số thập phân thứ tư) nếu biết:
LG a
\(tg\alpha = \dfrac{1}{3}\)
Phương pháp giải:
Các tỉ số lượng giác của góc nhọn (hình) được định nghĩa như sau:
\(\sin \alpha = \dfrac{{AB}}{{BC}};\cos \alpha = \dfrac{{AC}}{{BC}};\)\(\tan \alpha = \dfrac{{AB}}{{AC}};\cot \alpha = \dfrac{{AC}}{{AB}}.\)
Lời giải chi tiết:
Vì \(tg\alpha = \dfrac{1}{3}\) nên có thể coi \(\alpha\) là góc nhọn của một tam giác vuông có các cạnh góc vuông là 1 và 3.
Suy ra cạnh huyền của tam giác vuông là: \(\sqrt {{1^2} + {3^2}} = \sqrt {10} \approx 3,1623\)
Vậy: \(\sin \alpha = \dfrac{1}{{3,1623}} \approx 0,3162\); \(\cos \alpha = \dfrac{3}{{3,1623}} \approx 0,9487\)
LG b
\(\cot g\alpha = \dfrac{3}{4}.\)
Phương pháp giải:
Các tỉ số lượng giác của góc nhọn (hình) được định nghĩa như sau:
\(\sin \alpha = \dfrac{{AB}}{{BC}};\cos \alpha = \dfrac{{AC}}{{BC}};\)\(\tan \alpha = \dfrac{{AB}}{{AC}};\cot \alpha = \dfrac{{AC}}{{AB}}.\)
Lời giải chi tiết:
Vì \(cotg \alpha = \dfrac{3}{4}\) nên có thể coi \(\alpha\) là góc nhọn của một tam giác vuông có các cạnh góc vuông là 3 và 4.
Suy ra cạnh huyền của tam giác vuông là: \(\sqrt {{3^2} + {4^2}} = \sqrt {25} = 5\)
Vậy: \(\sin \alpha = \dfrac{4 }{5} =0,8\); \(\cos \alpha = \dfrac{3}{5}= 0,6\)
soanvan.me