Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Tìm x, biết: \({x^3} + 6{x^2} + 12x + 8 = 0.\) 

Bài 2. Cho \(a + b + c = 0.\)  Chứng minh rằng: \({a^3} + {b^3} + {c^3} = 3abc.\)

Bài 3. Chứng minh rằng:

\({\left( {a + 2} \right)^3} - \left( {a + 6} \right)\left( {{a^2} + 12} \right) + 64 = 0\) , với mọi giá trị của a.

LG bài 1

Phương pháp giải:

Sử dụng: 

\({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)

Lời giải chi tiết:

Ta có: \({x^3} + 6{x^2} + 12x + 8 =0\)

\( \Rightarrow {x^3} + 3.{x^2}.2 + 3.x{.2^2} + {2^3} = 0\)

\(\Rightarrow  {\left( {x + 2} \right)^3} = 0 \)

\(\Rightarrow x + 2 = 0 \Rightarrow x =  - 2\)

Vậy \(x=-2\)

LG bài 2

Phương pháp giải:

Sử dụng: 

\({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)

Lời giải chi tiết:

Ta có: \(a + b + c = 0 \Rightarrow c =  - a - b\)

Vậy: 

\({a^3} + {b^3} + {c^3} \)

\(= {a^3} + {b^3} + {\left( { - a - b} \right)^3} \)

\(= {a^3} + {b^3} - {\left( {  a + b} \right)^3} \)

\(= {a^3} + {b^3} - {a^3} - 3{a^2}b - 3a{b^2} - {b^3}\)

\( =  - 3{a^2}b - 3a{b^2}.\) 

Lại có: \(3abc = 3ab\left( { - a - b} \right) =  - 3{a^2}b - 3a{b^2}.\)

Từ hai kết quả trên, ta có: \({a^3} + {b^3} + {c^3} = 3abc\) (đpcm).

LG bài 3

Phương pháp giải:

Sử dụng:  

\({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)

Lời giải chi tiết:

Ta có:

\({\left( {a + 2} \right)^3} - \left( {a + 6} \right)\left( {{a^2} + 12a} \right) + 64\)

\( = {a^3} + 6{a^2} + 12a + 8 - \left( {{a^3} + 12a + 6{a^2} + 72} \right) + 64\)

\( = {a^3} + 6{a^2} + 12a + 8 - {a^3} - 12a - 6{a^2} - 72a + 64\)

\( = 0\) (đpcm). 

soanvan.me