Đề bài
Bài 1. Rút gọn phân thức:
a) \({{{a^3} - 2{a^2}b} \over {2{a^3}{b^2} - {a^4}b}}\)
b) \({{4{x^2} - 4xy + {y^2}} \over {{y^2} - 4{x^2}}}\)
Bài 2. Tìm P, biết: \({a^2}P + 3Pa + 9 = {a^2}.\)
LG bài 1
Phương pháp giải:
Phân tích các đa thức trên tử và dưới mẫu thành nhân tử rồi rút gọn các phân thức
Lời giải chi tiết:
a) \({{{a^3} - 2{a^2}b} \over {2{a^3}{b^2} - {a^4}b}} = {{{a^2}\left( {a - 2b} \right)} \over {{a^3}b\left( {2b - a} \right)}} = {{ - {a^2}\left( {2b- a} \right)} \over {{a^3}b\left( {2b - a} \right)}} = {{ - 1} \over {ab}}.\)
b) \({{4{x^2} - 4xy + {y^2}} \over {{y^2} - 4{x^2}}} = {{{{\left( {y - 2x} \right)}^2}} \over {\left( {y - 2x} \right)\left( {y + 2x} \right)}} = {{y - 2x} \over {y + 2x}}.\)
LG bài 2
Phương pháp giải:
Biểu diễn P theo a
Lời giải chi tiết:
\({a^2}P + 3Pa + 9 = {a^2} \)
\(\Rightarrow \left( {{a^2} + 3a} \right)P = {a^2} - 9\)
\( \Rightarrow P = {{{a^2} - 9} \over {{a^2} - 3a}} = {{\left( {a - 3} \right)\left( {a + 3} \right)} \over {a\left( {a + 3} \right)}} = {{a - 3} \over a}.\)
soanvan.me