Đề bài
Rút gọn:
1. \(A = {{{a^2} + {b^2}} \over {{x^3} + {x^2}y}}.{{{x^2} - {y^2}} \over {{a^4} - {b^4}}}\)
2. \(B = {{64{x^2}{y^2} - 1} \over {{x^2} - 4}}.{{{{\left( {x + 2} \right)}^2}} \over {{x^2} - 4}}.{{{{\left( {x - 2} \right)}^2}} \over {8xy + 1}}\)
3. \(C = \left( {1 - {{a - b} \over {a + b}}} \right).\left( {2 + {{2b} \over {a - b}}} \right).\)
Phương pháp giải - Xem chi tiết
Tính các biểu thức theo thứ tự ưu tiên: Trong ngặc trước, sau đó đến cộng, trừ, nhân, chia
Lời giải chi tiết
1.
\(A = {{{a^2} + {b^2}} \over {{x^2}\left( {x + y} \right)}}.{{\left( {x - y} \right)\left( {x + y} \right)} \over {\left( {{a^2} + {b^2}} \right)\left( {{a^2} - {b^2}} \right)}} = {{x - y} \over {{x^2}\left( {{a^2} - {b^2}} \right)}}.\)
2.\(B = {{\left( {8xy + 1} \right)\left( {8xy - 1} \right).{{\left( {x + 2} \right)}^2}{{\left( {x - 2} \right)}^2}} \over {{{\left( {x + 2} \right)}^2}{{\left( {x - 2} \right)}^2}\left( {8xy + 1} \right)}} \)\(\;= 8xy - 1.\)
3.
\(C = {{a + b - a + b} \over {a + b}}.{{2a - 2b + 2b} \over {a - b}} = {{4ab} \over {{a^2} - {b^2}}}.\)
soanvan.me