Câu hỏi 1 :

Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?

  • A

    Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa  

  • B

    Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ

  • C

    Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 

  • D

    Cả ba đáp án A,B,C đều đúng

Đáp án của giáo viên lời giải hay : C

Lời giải chi tiết :

Đối với biểu thức không có dấu ngoặc thì thứ tự thực hiện phép tính đúng là : Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ  

Câu hỏi 2 :

Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

  • A

    \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)   

  • B

    \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)          

  • C

    \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

  • D

    \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

Đáp án của giáo viên lời giải hay : B

Lời giải chi tiết :

Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

Câu hỏi 3 :

Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là

  • A

    $100$ 

  • B

    $95$ 

  • C

    $105$ 

  • D

    $80$ 

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.

Lời giải chi tiết :

Ta có \({2^4} - 50:25 + 13.7\)\( = 16 - 2 + 91 = 14 + 91 = 105\)

Câu hỏi 4 :

Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

  • A

    6

  • B
    3
  • C
    2
  • D
    1

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Thực hiện phép tính trong ngoặc tròn ( ) trước: Lũy thừa \( \to \)  nhân và chia \( \to \)  cộng và trừ.

Lấy kết quả trong ngoặc nhân với 3.

Lời giải chi tiết :

\(3.\left( {{2^3}.4 - 6.5} \right) = 3.\left( {8.4 - 6.5} \right)\)\( = 3.\left( {32 - 30} \right) = 3.2 = 6\)

Câu hỏi 5 :

Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)  là

  • A

    $319$          

  • B

    $931$     

  • C

    $193$               

  • D

    $391$

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Thực hiện phép tính trong ngoặc đơn trước rồi tính trong ngoặc vuông.

Sau đó là phép lũy thừa, nhân và trừ các kết quả.

Lời giải chi tiết :

Ta có \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)

\( = {3^4}.6 - \left( {131 - {6^2}} \right)\)

\( = 81.6 - \left( {131 - 36} \right)\)

\( = 486 - 95 = 391.\)

Câu hỏi 6 :

Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:

  • A

    $9$    

  • B

    $10$           

  • C

     $11$                          

  • D

    $12$

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

+ Tính vế phải sau đó tìm thừa số chưa biết bằng cách lấy tích chia cho thừa số đã biết.

+ Sử dụng mối quan hệ giữa số hạng và tổng để tìm $x$

Lời giải chi tiết :

\(\begin{array}{l}5(x + 15) = {5^3}\\5(x + 15) = 125\\x + 15 = 125:5\\x + 15\, = 25\\x\,\, = 25 - 15\\x\, = 10.\end{array}\)

Câu hỏi 7 :

Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).

  • A

    $x = 7$   

  • B

     $x = 8$                    

  • C

    $x = 9$                        

  • D

     $x = 10$

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Dựa vào mối quan hệ giữa số hạng và tổng, giữa số bị trừ, số trừ và hiệu hoặc giữa thừa số và tích để tìm $x$.

Lời giải chi tiết :

\(\begin{array}{l}165 - \left( {35:x + 3} \right).19 = 13\\\left( {35:x + 3} \right).19\, = 165 - 13\\\left( {35:x + 3} \right).19 = 152\\35:x + 3 = 152:19\\35:x + 3\, = 8\\35:x\, = 8 - 3\\35:x\,\, = 5\\x\, = 35:5\\x = 7.\end{array}\)

Câu hỏi 8 :

Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được

  • A

    $132$ 

  • B

    $312$    

  • C

    $213$   

  • D

    $215$

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Dùng tính chất  \(\left( {a + b + c} \right):m = a:m + b:m + c:m\)

Và các công thức lũy thừa \({\left( {a.b} \right)^n} = {a^n}.{b^n};\,{\left( {{a^n}} \right)^m} = {a^{n.m}};\,{a^m}:{a^n} = {a^{m - n}}\) để tính toán.

Lời giải chi tiết :

Ta có \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\)

\( = {10^3}:{5^3} + {10^4}:{5^3} + {125^2}:{5^3}\)

\( = {\left( {2.5} \right)^3}:{5^3} + {\left( {2.5} \right)^4}:{5^3} + {\left( {{5^3}} \right)^2}:{5^3}\)

\( = {2^3}{.5^3}:{5^3} + {2^4}{.5^4}:{5^3} + {5^6}:{5^3}\)

\( = {2^3} + {2^4}.5 + {5^3}\)

\( = 8 + 16.5 + 125\)

$ = 8 + 80 + 125 = 213.$

Câu hỏi 9 :

Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:

  • A

    $77$

  • B

    $78$

  • C

    $79$

  • D

    $80$

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.

Lời giải chi tiết :

Ta có \({6^2}:4.3 + {2.5^2} = 36:4.3 + 2.25 = 9.3 + 50 = 27 + 50 = 77\).

Câu hỏi 10 :

Tìm $x$ biết: $914 - [(x - 300) + x] = 654\;$.

  • A

    $x = 560$

  • B

    $x = 280$

  • C

    $x = 20$

  • D

    $x = 40$

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Bước 1: Phá ngoặc tròn rồi thực hiện phép tính trong ngoặc vuông 
Bước 2: Coi biểu thức trong ngoặc là số trừ chưa biết 
Muốn tìm số trừ chưa biết ta lấy số bị trừ trừ đi hiệu 
Bước 3: Coi \(2x\)  là số bị trừ chưa biết 
Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ
Muốn tìm thừa số chưa biết ta lấy tích chia cho thừa số đã biết.

Lời giải chi tiết :

Ta có: 

$914 - [(x - 300) + x] = 654\;$

\(\begin{array}{l}914 - \left( {x - 300 + x} \right) = 654\\914 - \left( {2x - 300} \right) = 654\\2x - 300 = 914 - 654\\2x - 300 = 260\\2x = 260 + 300\\2x = 560\\x = 560:2\\x = 280\end{array}\)
Vậy \(x = 280.\)