Câu hỏi 1 :

Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng

  • A

    $140$   

  • B

     $60$  

  • C

    $80$         

  • D

    $40$

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Thực hiện phép tính trong  ngoặc tròn rồi đến ngoặc vuông. Sau đó là phép nhân và phép trừ.

Lời giải chi tiết :

Ta có \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\)

\( = 2\left[ {\left( {195 + 5} \right):8 + 195} \right] - 400\)

\( = 2\left[ {200:8 + 195} \right] - 400\)

\( = 2\left( {25 + 195} \right) - 400\)

\( = 2.220 - 400\)

\( = 440 - 400\)

\( = 40\)

Câu hỏi 2 :

Giá trị nào dưới đây của \(x\) thỏa mãn \({2^4}.x - {3^2}.x = 145 - 255:51?\)

  • A

    $20$     

  • B

    $30$                 

  • C

    $40$                            

  • D

    $80$

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

+ Tính giá trị vế phải và tính giá trị mỗi lũy thừa.

+ Sử dụng tính chất \(ab - ac = a\left( {b - c} \right)\) sau đó tính \(x\) bằng cách lấy tích chia cho thừa số đã biết.

Lời giải chi tiết :

Ta có \({2^4}.x - {3^2}.x = 145 - 255:51\)

\(16.x - 9.x = 145 - 5\)

\(x\left( {16 - 9} \right) = 140\)

\(x.7 = 140\)

\(x = 140:7\)

\(x = 20.\)

Câu hỏi 3 :

Câu nào dưới đây là đúng khi nói đến giá trị của \(A = 18.\left\{ {420:6 + \left[ {150 - \left( {68.2 - {2^3}.5} \right)} \right]} \right\}\) ?

  • A

    Kết quả  có chữ số tận cùng là \(3\)

  • B

    Kết quả là số lớn hơn \(2000.\)

  • C

    Kết quả là số lớn hơn \(3000.\) 

  • D

    Kết quả là số lẻ.

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Thực hiện các phép tính theo thứ tự \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

Lời giải chi tiết :

Ta có \(A = 18.\left\{ {420:6 + \left[ {150 - \left( {68.2 - {2^3}.5} \right)} \right]} \right\}\)

\( = 18.\left\{ {420:6 + \left[ {150 - \left( {68.2 - 8.5} \right)} \right]} \right\}\)

\( = 18.\left\{ {420:6 + \left[ {150 - \left( {136 - 40} \right)} \right]} \right\}\)

\( = 18.\left[ {420:6 + \left( {150 - 96} \right)} \right]\)

\( = 18.\left( {70 + 54} \right)\)

\( = 18.124\)

\( = 2232.\)

Vậy \(A = 2232.\)

Câu hỏi 4 :

Có bao nhiêu giá trị của \(x\) thỏa mãn \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132?\)

  • A

    $3$             

  • B

    $2$           

  • C

    $1$         

  • D

    $4$

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

+ Tìm số trừ bằng cách lấy số bị trừ trừ đi hiệu.

+ Tìm số hạng bằng tổng trừ đi số hạng đã biết.

Lời giải chi tiết :

Ta có \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132\)

\(23 + \left( {13 + 72 - x} \right) = 240 - 132\)

\(23 + \left( {85 - x} \right) = 108\)

\(85 - x = 108 - 23\)

\(85 - x = 85\)

\(x = 85 - 85\)

\(x = 0.\)

Có một giá trị \(x = 0\) thỏa mãn đề bài.

Câu hỏi 5 :

Giá trị của \(x\) thỏa mãn \(65 - {4^{x + 2}} = {2020^0}\) là

  • A

    $2$              

  • B

    $4$   

  • C

    $3$         

  • D

    $1$

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

+ Tìm số trừ bằng cách lấy số bị trừ trừ đi hiệu.

+ Biến đổi vế phải thành lũy thừa cơ số \(4\) rồi cho số mũ bằng nhau để tìm \(x.\)

Lời giải chi tiết :

Ta có \(65 - {4^{x + 2}} = {2020^0}\)

$65 - {4^{x + 2}} = 1$

\({4^{x + 2}} = 65 - 1\)

\({4^{x + 2}} = 64\)

\({4^{x + 2}} = {4^3}\)

\(x + 2 = 3\)

\(x = 3 - 2\)

\(x = 1.\)

Vậy \(x = 1.\)

Câu hỏi 6 :

Cho \(A = 4.\left\{ {{3^2}.\left[ {\left( {{5^2} + {2^3}} \right):11} \right] - 26} \right\} + 2002\) và \(B = 134 - \left\{ {150:5 - \left[ {120:4 + 25 - \left( {12 + 18} \right)} \right]} \right\}\). Chọn câu đúng.

  • A

    $A = B$           

  • B

    $A = B + 1$          

  • C

    $A < B$   

  • D

    $A > B$

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

+ Thực hiện theo thứ tự ngoặc tròn rồi ngoặc vuông rồi ngoặc nhọn.

+ Trong ngoặc ta thực hiện phép nâng lũy thừa rồi nhân chia, công trừ để tính \(A\) và \(B.\)

Lời giải chi tiết :

\(A = 4.\left\{ {{3^2}.\left[ {\left( {{5^2} + {2^3}} \right):11} \right] - 26} \right\} + 2002\)

\( = 4.\left\{ {{3^2}.\left[ {\left( {25 + 8} \right):11} \right] - 26} \right\} + 2002\)

\( = 4.\left[ {{3^2}.\left( {33:11} \right) - 26} \right] + 2002\)

\( = 4.\left( {{3^2}.3 - 26} \right) + 2002\)

\( = 4.\left( {27 - 26} \right) + 2002\)

\( = 4.1 + 2002\)

\( = 4 + 2002\)

\( = 2006.\)

Và \(B = 134 - \left\{ {150:5 - \left[ {120:4 + 25 - \left( {12 + 18} \right)} \right]} \right\}\)

\( = 134 - \left[ {150:5 - \left( {120:4 + 25 - 30} \right)} \right]\)

\( = 134 - \left[ {150:5 - \left( {30 + 25 - 30} \right)} \right]\)

\( = 134 - \left( {150:5 - 25} \right)\)

\( = 134 - \left( {30 - 25} \right)\)

\( = 134 - 5\)

\( = 129\)

Vậy \(A = 2006\) và \(B = 129\) nên \(A > B.\)

Câu hỏi 7 :

Tính nhanh: \(\left( {2 + 4 + 6 + ... + 100} \right)\left( {36.333 - 108.111} \right)\) ta được kết quả là

  • A

    $0$                       

  • B

    $1002$   

  • C

    $20$        

  • D

    $2$

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Thực hiện tính trong ngoặc trước sau đó đến nhân chia, cộng trừ.

Lời giải chi tiết :

\(\begin{array}{l}\left( {2 + 4 + 6 + ... + 100} \right)\left( {36.333 - 108.111} \right)\\ = \left( {2 + 4 + 6 + ... + 100} \right)\left( {36.3.111 - 36.3.111} \right)\\ = \left( {2 + 4 + 6 + ... + 100} \right).0\\ = 0\end{array}\)

Câu hỏi 8 :

Trong một cuộc thi có \(20\) câu hỏi. Mỗi câu trả lời đúng được \(10\) điểm, mỗi câu trả lời sai bị trừ \(3\) điểm. Một học sinh đạt được \(148\) điểm. Hỏi bạn đã trả lời đúng bao nhiêu câu hỏi?

  • A

    $16$               

  • B

    $15$   

  • C

    $4$    

  • D

    $10$

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Tính tổng số điểm đạt được nếu trả lời đúng hết.

Tính số điểm dư ra so với số điểm đạt được.

Từ đó suy ra số câu trả lời đúng và số câu trả lời sai.

Lời giải chi tiết :

Giả sử bạn học sinh đó trả lời đúng cả \(20\) câu thì tổng số điểm đạt được là \(10.20 = 200\) (điểm)

Số điểm dư ra là \(200 - 148 = 52\) (điểm)

Thay mỗi câu trả lời sai thành câu trả lời đúng thì dư ra \(10 + 3 = 13\) (điểm)

Số câu trả lời sai là \(52:13 = 4\) (câu)

Số câu trả lời đúng \(20 - 4 = 16\) (câu)

Câu hỏi 9 :

Gọi \({x_1}\) là giá trị thỏa mãn \({5^{x - 2}} - {3^2} = {2^4} - \left( {{2^8}{{.2}^4} - {2^{10}}{{.2}^2}} \right)\) và \({x_2}\) là giá trị thỏa mãn  \(697:\left[ {\left( {15.x + 364} \right):x} \right] = 17\) . Tính \({x_1}.{x_2}\).

  • A

    $14$    

  • B

    $56$  

  • C

    $4$         

  • D

    $46$

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Tìm các giá trị \({x_1}\) và \({x_2}\) từ đó tính tích \({x_1}.{x_2}\)

Lời giải chi tiết :

\(\begin{array}{l}{\rm{ + )}}\,\,\,{5^{x - 2}} - {3^2} = {2^4} - \left( {{2^{8 + 4}} - {2^{10 + 2}}} \right)\\{5^{x - 2}} - {3^2} = {2^4} - \left( {{2^{12}} - {2^{12}}} \right)\\{5^{x - 2}} - {3^2} = {2^4} - 0 = {2^4}\\{5^{x - 2}} - 9 = 16\\{5^{x - 2}} = 16 + 9\\{5^{x - 2}} = 25\\{5^{x - 2}} = {5^2}\\x - 2\,\, = 2\\x\,\, = 2 + 2\\x = 4.\end{array}\)

\(\begin{array}{l}{\rm{ + )}}\,697:\left[ {\left( {15.x + 364} \right):x} \right] = 17\\\left( {15x + 364} \right):x = 697:17\\\left( {15x + 364} \right):x = 41\\15 + 364:x = 41\\364:x = 41 - 15\\364:x = 26\\x = 364:26\\x = 14\end{array}\)

Vậy \({x_1} = 4;\,{x_2} = 14\) nên \({x_1}.{x_2} = 4.14 = 56.\)

Câu hỏi 10 :

Tính: \(1 + 12.3.5\)

  • A

    181

  • B

    195

  • C

    180

  • D

    15

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Thực hiện theo quy tắc:

Nhân và chia \( \to \)  cộng và trừ.

Lời giải chi tiết :

\(1 + 12.3.5 = 1+\left( {12.3} \right).5 = 1 + 36.5 = 1 + 180 = 181\)