Đề bài

Lấy các điểm A, B, C, D theo thứ tự đó trên đường tròn (O) sao cho số đo các cung: cung AB, cung CD lần lượt là 60º, 120º.

a) Chứng minh rằng: \(AC \bot BD\).

b) Gọi I là giao điểm của đường thẳng AD và BC. Tính góc AIB.

Phương pháp giải - Xem chi tiết

Sử dụng:
+Số đo góc có đỉnh bên trong đường tròn

+ Số đo góc có đỉnh bên ngoài đường tròn

Lời giải chi tiết

a) Gọi E là giao điểm của AC và BD. Ta có:

\(\widehat {AEB} = \dfrac{{sd\overparen{AB} + sd\overparen{CD}} }{ 2} \)\(\,= \dfrac{{60^\circ  + 120^\circ }}{ 2} = 90^\circ \) ( góc có đỉnh bên trong đường tròn)

\(\Rightarrow\) AC vuông góc BD.

b) \(\widehat {AIB} = \dfrac{{sd\overparen{CD} + sd\overparen{AB}} }{ 2}\)\(\, =\dfrac {{120^\circ  - 60^\circ }}{ 2} = 30^\circ \) ( góc có đỉnh bên ngoài đường tròn).

 soanvan.me